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ABSTRACT

        The objective of this research is to devise new methods and tools to generate real time 

awareness of the material state of composite and metallic structures through ultrasonic 

nondestructive evaluation (NDE) and structural health monitoring (SHM) at its very early 

stage of failure. To device new methodology it is also important to verify the method 

through virtual experiments and hence computational NDE is getting popular in the recent 

years. In this thesis, while experimental methodology is developed to understand the 

material state at its early stage of failure, a new peridynamic based Peri-Elastodynamic 

(PED) computational method is also developed for virtual NDE and SHM experiments. In 

the experimental part, material state awareness through precursor damage quantification is 

proposed for composite materials and in the predictive part modelling of ultrasonic wave 

propagation in the engineered materials is developed. Symbiotic information fusion 

between the Guided Coda Wave Interferometry (CWI) and Quantitative Ultrasonic Image 

Correlation (QUIC) was devised for the awareness and the quantification of the precursor 

damage state in composites. The proposed research work is divided into two major parts a) 

Experimental and b) Computational. 

         a) Experimental: In composite materials, the precursor damages (for example matrix 

cracking, microcracks, voids, fiber micro-buckling, local fiber breakage, local debonding, 

etc.) are insensitive to the low-frequency ultrasonic NDE or Structural Health Monitoring 

(SHM) (~100–~500 kHz) methods. Overcoming this barrier, an online method using the 
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later part of the guided wave signal, which is often neglected is proposed for the precursor 

damage quantification. Although the first-arrival wave packets that contain the 

fundamental guided Lamb wave modes are unaltered, the following part of the wave 

packets however carry significant information about the precursor events with predictable 

phase shifts. The Cross-correlation and Taylor-series-based modified CWI technique is 

proposed to quantify the stretch parameter to compensate the phase shifts in the coda wave 

as a result of precursor damage in composites. The results are thoroughly validated with 

newly formulated high frequency (>~25MHz) QUIC method. The proposed process is 

validated and verified with American Society of Testing of Materials (ASTM) standards 

woven composite-fiber-reinforced-laminate specimens (CFRP). Both online CWI and 

offline QUIC was performed to prove the feasibility and reliability of the proposed 

precursor damage quantification process. Visual proof of the precursor events is provided 

from the digital micro optical microscopy and scanning electron microscopy. Additionally, 

acoustic-nonlinearity of analysis Lamb wave propagation was employed to investigate, 

stress-relaxation phenomena in composites. Fatigue loading on composite specimens 

followed by relaxation experiments were conducted to examine influence of damage and 

relaxation on acoustic-nonlinearity. It was observed that the stress-relaxation in composite 

is primarily coupled with the second-order nonlinearity parameters derived from the Lamb 

wave modes. Furthermore, these parameters were found inherently associated with the 

remaining strength of the composites. Results from the nonlinear analysis were found to 

be in good agreement with those obtained from CWI analysis.  

        In the near future, it is expected that the structure, structural component or individual 

material states could be digitally certified for their future missions by including a predictive 
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tool in a “Digital Twin” software fusing the information from experimental finding. This 

thesis contributes to this concept and the information obtained from experimental NDE 

discussed above can be utilized by a predictive tool to predict accurate material behavior 

as well as NDE or SHM sensor signals off-line, simultaneously. Considering multiple 

advantages of peridynamic based approach in incorporating experimental data and damage 

modelling capability over tradition approaches, newly devised Peri-Elastodynamic (PED) 

is discussed in the following paragraph to simulate the three-dimensional (3D) Lamb wave 

modes in materials for the first time. 

        b) Computational: PED is a nonlocal meshless approach which is a scale-independent 

generalized technique to visualize the acoustic and ultrasonic waves in plate-like structures. 

Characteristics of the fundamental Lamb wave modes are simulated in a plate-like structure 

with a surface mounted piezoelectric (PZT) transducer which is actuated from the top 

surface. In addition, guided ultrasonic wave modes were also simulated in a damaged plate. 

the PED results were validated with the experimental results which shows that the newly 

developed method is more accurate and computationally cheaper than the FEM to be used 

for computational NDE and SHM. PED was also extended to investigate the wave-damage 

interaction with damage (e.g., a crack) in the plate. The accuracy of the proposed technique 

herein is confirmed by performing the error analysis on symmetric and anti-symmetric 

Lamb wave modes compared to the experimental results for both pristine and damaged 

plate
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CHAPTER 1 

INTRODUCTION 

1.1 BACKGROUND AND MOTIVATION 

        In recent years, Material State Awareness (MSA) of the structures by utilizing 

structural health monitoring (SHM) and/Nondestructive Evaluation (NDE) has gain 

enormous popularity to reduce maintenance cost for aircraft, bridges and mechanical 

equipment’s. United States spends 65-80% (Figure 1.1) of total operating cost for 

maintenance and operation of defense equipment’s and facilities [2-5]. A major portion of 

the cost comes from unnecessary maintenance activity and unscheduled repairs. To 

minimizing excessive operating costs and improving life cycle for Department of Defense 

(DoD) equipment’s and weaponry systems, U.S. adopted implementation of effective 

Condition Based Maintenance (CBM+) system to prevent failure of critical structural 

components [6, 7]. MSA is a key component of CBM+ system, seeks remaining useful 

lifetime of the structural components. Integration of information’s from various 

disciplines such as, mechanics of material, material science and NDE are employed for 

MSA of the structural component. Estimation of remaining life of the structural 

components is estimated based on the knowledge of the initial state, failure model, 

material degradation mechanism, operational environment and NDE of the structural 

components. Major advantages of incorporating MSA into critical defense systems are 

followings: 
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o Increase the sustainability of the structural components, since 

maintenance, repair and replacement decision are taken based on the 

current condition of the components. 

o Enabling advanced planning for the maintenance action. 

o Minimizing catastrophic failure of the structural components.  

 

Figure 1.1 Operation and cost for maintenance of defense equipment [3] 

        Carbon fiber composites are widely used as structural material for aircrafts and other 

mechanical equipment’s due to their superior properties over metals, such as higher 

specific strength, higher specific modulus [8, 9]. Material properties of the composite 

materials are engineered based on respective structural requirements. Recently, more than 

50 percent composites (Figure 1.2) were used as structural materials for the Dreamliner 

787 to decrease the weight of the aircraft and increase fuel efficiency. For future vertical 

lift air fighter jet programs, composites are being used as main structural material. Despite 

numerous benefits of composites as potential structural material, during its exposer to 

severe environment and extreme loading conditions under operation, internal damages in 

the form of micro-cracks, fiber breakage and voids are developed. These internal damages 



www.manaraa.com

3 

inside composite structures could have serious consequences on operation and safety of the 

structures [2, 10, 11]. Internal damages interact and grow over the time which can lead to 

severe damages in the structure. Material State Awareness (MSA) can be used to estimate 

severity of damage development and to estimate remaining useful life of the structural 

components.   

 

Figure 1.2  Composite usage of Boeing 787-dreamliner [3, 12] 

        The key to success in MSA involves efficient implementation of Structural health 

monitoring (SHM) [13] and Nondestructive Evaluation (NDE) techniques. Ultrasonic 

waves such as Lamb wave and Bulk wave are widely used for MSA of different 

engineering structures [14]. For online inspection of engineering structure, ultrasonic 

sensors are strategically mounted on critical locations of the structure and sensors signals 

are collected continuously or on-demand basis. Efficient diagnostic and prognostic 

algorithms are then employed to estimate the severity of the damage and the damage 

growth [15]. For offline inspections of the structure, ultrasonic transducers are used for 
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periodically investigation of the structures [16]. By analyzing the SHM/NDE data, damage 

geometry and material degradation are estimated (Figure 1.4). Damage geometry and 

degradation parameters can also be incorporated in the Finite Element Method (FEM) 

model to estimate remaining useful life and progression of damages in the structures.   

 

Figure 1.3 Weiss Curve for condition monitoring of composite structure [2, 17] 

         Main drawback of existing SHM and/NDE techniques is that they are sensitive to 

only gross defects and are inefficient for small scale damages such as fiber breakage, matrix 

cracking, and void growth in composite materials. As seen in the Figure.1.3, over 80% of 

total life of the components is elapsed by the time the damages are detected by conventional 

SHM/or NDE technology. Micro-scale and meso-scale damages remain undetected. 
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Detecting early stage damage state of composites is a major challenge in SHM/or NDE. 

Therefore, it is necessary to devise new tools and techniques that are sensitive to small-

scale damages.  

 

         Figure 1.4 NDE interface with the failure models. 

        Additionally, good understanding of sensor signals obtained in SHM/NDE 

experiments are required to extract information of current damage state of the structure and 

prediction of remaining useful life of the structure. To understand the sensor signals, it is 

essential to perform wave propagation experiments for structures with representative 

damage states. However, there could be infinite possibilities of damage states in the 

material and it is impossible to experimentally obtain the understanding of the sensor 

signals due to the varying damage states. An offline NDE simulation tool will add 

tremendous value [18] to the understanding of the physics of the wave propagation and 

its interaction with the damages. Unlike experiments, in simulations, various host 

structure geometries and different damage scenarios could be analyzed more 
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inexpensively. Thus recently, Computational NDE and SHM [13, 19] have gained 

enormous popularity.  

MSA estimates remaining useful life of the structural components based on information 

obtained from composite failure analysis, degradation mechanism and NDE/SHM data, 

therefore, in the subsequent section various composites failure models, degradation 

methods and NDE techniques are reviewed. 

1.2 PROGRESSIVE COMPOSITE FAILURE MODEL 

         Failure prediction of the composite structures is very complicated since composites 

show different mechanical behavior than metallic structures. To design a reliable 

composite structure, there is a need to predict composite failure under different loading and 

boundary conditions. Various progressive failure models are developed for different 

composite materials during past few decades [20].  These models can be employed to 

predict structural damage progression from damage initiation to ultimate failure of the 

structure. A progressive failure model for a composite structure consists of three major 

parts: laminate theory for structural stress analysis, failure models for prediction of onset 

of different damage modes and a material property degradation models to control how a 

specific property need to be changed due to progressive failure [21]. 

1.2.1 CLASSICAL LAMINATE THEORY FOR STRESS ANALYSIS 

 
        Composite laminate consists of multiple layers bonded together. Each layer of the 

composite is called lamina.  Figure 1.5(a) is the schematic of an unidirectional fiber-

reinforced composite lamina. Stiffness of the lamina along fiber direction is denoted by 1E

and Stiffness transverse to the fiber direction is denoted by 2E , Stress-strain relationship 

for two-dimensional lamina can be written as [22],  
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Figure 1.5 (a) Unidirectional Lamina, (b) Off-axis Lamina. 

If the principle material coordinate axis does not coincide with the loading direction as 

shown in the Figure 1.5(b), stress-strain relationships along loading direction coordinate is 

obtained by performing coordinate transformation. Stress-strain relationship are expressed 

as,  
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Where,  

4 4 2 2
11 11 22 12 66cos ( ) sin ( ) 2( 2 )sin ( )cos ( )Q Q Q Q Q        

2 2 4 4 4
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4 4 2 2
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Figure 1.6 laminate with different plies. 

Stress-strain relationship for a laminate is given by, 
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Where t is total thickness of the laminate, n is the number of layers, and kt is thickness of 

the kth layer. 
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1.2.2 FAILURE CRITERION OF LAMINA 

 
        Failure criteria for composite materials is defined by the mathematical equations to 

predict onset of a damage mode. Unlike metallic structures, composite materials typically 

fail under different damage modes such as, fiber breakage, matrix damage, shear failure or 

combination of both matrix damage and delamination. Failure criteria in the composite 

material often classified into two major categories, named as, damage mode-depended or 

damage mode-independed criteria [23]. A vast amount of research has been accomplished 

during past five decades to develop failure criteria and a large amount of literature available 

for composite materials.   

1.2.2.1 Mode-independed failure criteria   

 
        Mode independed failure criteria are mathematical equations in stress/strain space to 

predict damage onset. These criteria do not provide indication of typical failure modes. The 

simplest and widely used mode-independed criteria are maximum stress theory and 

maximum strain theory. They are represented by inequality condition of stress and strain 

where individual stress and strain components are compared with the associated allowable 

limits.  They area also called as non-interactive failure criteria as there is no interaction 

between stress and strain components in the failure equation. The most popular Interactive 

failure criteria are the Tsai-Hill Criteria and Tsai-Wu Criteria. These criteria generally 

use interaction between stress and strain in the form of quadratic equation.  

1.2.2.1.1 Maximum stress theory 
 

        In maximum stress criteria, failure occurs where applied stress exceeds the 

corresponding allowable stress. Failure criteria can be represented by following 

mathematical equation:  
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1 2 12

, ,

max , , 1
T C T CX Y S

      
  

                                                                                           (1.6) 

Where TX , CX , TY , CY  and S  are maximum allowable stress in the composite. 

TX =maximum allowable tensile strength in the fiber direction. 

CX =maximum allowable compressive strength in the fiber direction. 

TY =maximum allowable tensile strength in the matrix direction.   

CY = maximum allowable compressive strength in the matrix direction.   

S =maximum allowable shear strength.  

The safe zone to avoid failure is represented by following condition:  

1C TX X    

2C TY Y    

12 S                                                                                                                              (1.7) 

1.2.2.1.2 Maximum strain theory 

 
        In maximum strain criteria, failure occurs when applied strain exceeds the 

corresponding allowable strain in the composite materials. Failure condition can be 

expressed by following mathematical equations:  

  1 2 1

1 , 2 , 12

max , , 1
U U U
T C T C

  
  

    
  

                                                                                    (1.8) 

Where 1
U
T 1

U
C , 2

U
T , 2

U
C  and 12

U  are maximum allowable strain in the composite. 

1
U
T =maximum allowable tensile strain in the fiber direction. 

1
U
C =maximum allowable compressive strain in the fiber direction. 
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2
U
T =maximum allowable tensile strain in the matrix direction.  

2
U

C = maximum allowable compressive strain in the matrix direction.   

12
U =maximum allowable shear strain. 

Safe zone to avoid failure can be expressed by following condition: 

1, 1 1,
U U

C T       

2, 2 2,
U U

C T      

    12 12
C                                                                                                                       (1.9) 

1.2.2.1.3 Tsai-Hill Criteria 

 
        Under plane stress conditions, Tsai-Hill Criteria includes interaction among the 

stress components in the form of quadratic polynomial equation. Failure in the lamina 

occurs if and when following condition is fulfilled:  

2 2 2

1 2 12 1 2
2

, , ,

1
T C T C T CX Y S X

                         
                                                                    (1.10) 

Where ,T CX  and  ,T CY  is chosen as either TX or CX  and TY or CY , depending on the sign of 

the applied stress, 1  and 2 , respectively.  

1.2.2.1.4 Tsai-Wu Criteria 

 
        Tsai-Wu Criteria predicts failure of a lamina under plane stress conditions when 

the following condition is satisfied: 

1i i ij i jF F      

2 2 2
11 1 11 2 66 12 1 1 2 2 12 1 22 1F F F F F F                                                               (1.11) 
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1F , 2F , 6F , 11F , 22F and 66F are strength coefficients and are function of strength 

parameters, is expressed by,  

1

1 1
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    
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1 1
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S
  

12
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11 22

F
F

F F
    

121 1F                                                                                                                (1.12) 

Failure envelops of the different mode independent failure model under bi-axial loading 

condition are shown in the Figure 1.7.  

1.2.2.2 Mode-depended failure criteria   

 
         Mode-dependent failure criteria consists of a set of quadratic equations where each 

equation defines a failure mode. These criteria distinguish the different failure modes, such 

as tensile fiber failure, compressive fiber failure, tensile matrix failure and compressive 

failure. Failure modes are determined by comparing the ratio of applied stress and 

corresponding allowable limit in interactive equation. Widely used mode-dependent 

criteria are Hashin Criteria and Christensen Criteria. 
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Figure 1.7 Comparison of different mode dependent failure criteria under biaxial 
loading condition [Material: AS4/3501-6  Graphite epoxy system] [1]. 

 

1.2.2.2.1 Hashin Criteria for 2D case  

 
        Hashin and Rotem [24, 25] proposed four separate failure criteria to predict the 

onset of different failure modes. Primary fiber failure modes such as tensile fiber, 

compressive fiber, and primary matrix failure modes such as, tensile matrix, and 

compressive matrix failure are predicted by the proposed theories. The four failure 

criteria for four different failure modes are briefly explained as follows: 

Tensile fiber failure mode ( 1 >0) 

2 2

1 12 1
TX S

        
  

                                                                                                 (1.13) 

Compressive fiber failure mode ( 1 <0) 
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2

1 1
CX

 
 

 
                                                                                                              (1.14) 

Tensile Matrix failure mode ( 2 >0) 
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                                                                                                  (1.15) 

Compressive Matrix failure mode ( 2 <0)  
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                                                                       (1.16) 

1.2.2.2.2 Christensen Criteria 

 
        Christensen proposed a strain energy-based failure criterion to distinguish different 

failure modes of composites. This theory includes out-of-place stress components into 

the mathematical model.  This theory is well suited for carbon fiber composites with 

high anisotropy for both stiffness and strength.  

For matrix-mode of failure, the safe zone to avoid failure must meet following 

conditions,  
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For fiber-mode of failure, the safe zone must satisfy following conditions, 

2
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11C TX X                                                                                                         (1.18) 

1.2.3 MATERIAL DEGRADATION MODEL 

 
        For prediction of failure of a composite laminate, it is important to estimate stress 

and strain distribution at each lamina by using laminate theory. Stresses and strains 

components for each lamina are then transformed from the global coordinate to local 

principal coordinate. Appropriate failure criteria are then employed for failure prediction 

of each lamina. Load carrying capacity of a lamina depends on the types of failure 

modes. Once the lamina is failed, stress-strains are redistributed and increase stresses 

on remaining laminas. Several methods have been proposed to account effect of failed 

lamina and include it in the progressive damage model to predict behavior of the 

laminate.  

 

Figure 1.8 Basics of degradation model [20]. 
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1.2.3.1 Sudden degradation model 

 
        According to sudden degradation model, the properties of the composite are 

degraded into some fraction of the pristine properties depending on the types of the 

failure modes (path ABCD, shown in Figure 1.8). Based on sudden degradation model, 

conservative prediction of structural strength and stiffness are obtained. Also damage 

accumulation during composite failure process is overlooked by the sudden degradation 

model since the material is assumed to have two states: undamaged or totally damaged. 

Sudden degradation model falls into two categories: total discount method and limited 

discount method.  

1.2.3.1.1 Total discount model 
 
       zero stiffness and strength are assigned to the failed lamina in all direction for any 

types of failure mode. For any failure modes, stiffness of an UD lamina (Figure 1.9) is  

assigned as follows [26], 

1 0E  ; 2 0E  ; 12 0G                                                                                                  (1.19) 

1.2.3.1.2 Limited discount model 

 
       In this method, when a lamina fails due to matrix cracking, zero stiffness and 

strength are assigned to failed lamina for the transverse and shear mode.  If the lamina 

fails due to fiber breakage, total discount method is applied [26].  

1 1E E ; 2 2(1 )E d E  ; 12 12(1 )G d G                                                                   (1.20) 

Where d is the damage parameter, 
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Figure 1.9 Principal planes of the UD lamina.  

 

1.2.3.2 Gradual degradation model 

 
       For accurate prediction of the damage progression in the composite materials, 

gradual degradation models are used. Gradual degradation of the material property is 

assumed of accumulation of damages inside the material. The material property of the 

composites changes from pristine to damaged state gradually by following a nonlinear 

path [20](represented by path ABD) as shown in the Figure 1.8.  Degradation of the 

property is controlled by external field such as strains. In composite materials different 

types of damages modes are developed when they are subjected to different types of 

loading.  Onset of different damage modes depend on laminate sequence, composition 

and types of loading. Fracture in the laminate takes place when different interacting 

damage modes accumulate significantly [23]. A vast amount ofnstudies have 

demonstrated the accuracy of the gradual degradation model to model progressive 

damage progression. Few important researches are discussed here. Chang and Chang 
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[27] proposed a damage degradation model based on the fiber bundle theory to analyzed 

different laminates and pin loaded joints under different types loading and boundary 

conditions. Lee at al. [28] used shear lag model to estimate degradation parameter for 

fiber failure. Joo et al. [29, 30] also employed shear lag analysis between plies to calculate 

degradation parameters for transverse matrix cracking.   

1.2.3.3 Shortcomings and new opportunities 

 
        Progressive damage models provide an excellent capability to predict failure in the 

composite structures, however, degradation rules have not established as an acknowledged 

form. Most of the degradation factors are in empirical forms and are determined from 

experiments. Extensive tests are required to obtain the parameters of the empirical 

equation. Also, empirical models developed for a particular material is not suitable for 

different material types. Additionally, conducting series of experiments to obtain 

degradation model is expensive cost. Nondestructive testing method based on Lamb wave 

and bulk wave-based techniques can be employed to obtain parameters of the degradation 

model. It is very easy to implement SHM/NDE to obtain real time values of the degradation 

parameters. Few novel techniques that can be employed to obtain degradation parameters 

at early very stage are discussed in subsequent sections. An online technique-based coda 

wave interferometry was discussed. Also, an offline, named as QUIC was also discussed. 

QUIC is a hybrid approach, developed based on Scanning Acoustic Microscopy and 

nonlocal theories of wave equation [4].  

1.3 CODA WAVE INTERFEROMETRY IN A HETEROGENOUS MEDIUM 

        Ultrasonic techniques based on the coda wave interferometry are widely being used 

to quantify weak and local changes in the complex heterogeneous material medium.  While 
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passing though the heterogenous medium sound wave scattered multiple times and create 

a slowly decaying wave, called as coda wave. Coda waves are found to be extremely 

sensitive to small-scale damages in the material medium, and in nondestructive testing the 

technique is being widely used to monitor formation of microcracks in the material [31-

37].  

1.3.1 THEORY 

         Suppose a wave passes through a strongly scattered medium that changes with time.  

The wave field before any change can be written as sum of the waves that propagate along 

the multiple scattering path of the medium, is expressed by [32-34, 38], 

( ) ( )Un
T

Tr

U t A t                                                                                                          (1.21) 

where  Tr is the multiple scattering trajectories of the medium, TA is wave which propagate 

along the trajectories. 

when there is a change in the medium, the perturbed wavefield can be expressed by [32-
34, 38],  

( ) ( )Pu
T T

Tr

U t A t                                                                                                      (1.22) 

where T  is the change of change in arrival time of the wave that propagates along each 

trajectory. In order to estimate change in the waveform, cross correlation of the two-wave 

form is performed. The cross-correlation factor is expressed by following equation,  
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Value of the st  that gives maximum correlation is used to measure the change of the 

waveform. 

1.4 NONLOCAL THEORIES 

        Nonlocal continuum theories are widely used to predict material response at 

macroscale as well as molecular and atomic scales. It was first introduced by Kroner [39] 

who formulated a continuum theory for an elastic material body with long range force. 

Classical continuum mechanics approach was modified to model material behavior at 

smaller length scale while retaining almost all advantages of the classical approach. 

Nonlocal theory has been widely used in the areas of fracture mechanics [40], dislocation 

mechanics [41], wave propagation in composite materials [42], lattice dispersion of elastic 

wave [43], and surface tension in fluid medium [44]. Most important application of 

nonlocal theory is to solve crack-tip problem where stresses were predicted bounded rather 

than unbounded (singularity) as predicted by the classical continuum theory [40, 45-48].  

 

Figure 1.10 Local and nonlocal approaches.  
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       Various nonlocal theories have been proposed in the past to connect continuum 

mechanics theory with atomistic theory [45]. Nonlocal theories including higher-order 

displacement gradients and integral type were introduced [49].  Both types of nonlocal 

theories are associated with an intrinsic length scale parameter, which is a variable and 

problem dependent, is related with fracture process zone size, lattice size and void size 

[45]. Eringen et al. [50-54] proposed nonlocal continuum theory (integral type) which 

include nonlocality of balance laws and thermodynamic laws.  Later the theory was 

modified by Eringen and co-researchers [40] by including nonlocality in the constitutive 

equations.  In this approach stress at a point in a material body is expressed as weighed 

value the strain field within a finite distance. The constitutive equation in nonlocal 

continuum theory proposed by Eringen is expressed as [42], 

' ' ' ' '( ) [ ( ) ( ) 2 ( ) ( )] ( )ij kk ij kk

V

x M x x e x M x x e x dv x                                          (1.24) 

        Where ij  and kke are stress and strain at a point in the material body;   and   are 

Lames constant; 'M x x  is a nonlocal kernel function or modulus function, which is 

included in the model to bring the influence of strain at a distant points 'x  to stress at x . 

The balance laws is expressed as [42],  

, , , , ,[ ( )] [( ) ] ( ) 0k k ij i j j i i i ij j ii j j

v v

u u u n dS u u dv f u     


                             (1.25) 

       Another type of nonlocal model, which is called as gradient type nonlocal model, 

express stress at a point as function of strain and its gradient at the same location [49].  

Most of the nonlocal theory, break down at crack as their formulation spatial derivative. 

To circumvent this obstacle, Silling [55] proposed a nonlocal theory that does not require 

spatial derivative instead uses displacements in the constitutive equation.   
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1.5 QUANTITATIVE ULTRASONIC IMAGE CORRELATION (QUIC)-BASED ON 
SCANNING ACOUSTIC MICROSCOPY AND NONLOCAL MECHANICS 

        Quantitative Ultrasonic Image Correlation (QUIC) technique using scanning acoustic 

microscopy (SAM) has emerged as a promising tool method for the noninvasive micro-

structural characterization of the materials [56-61]. Surface and subsurface mechanical 

properties of metallic, composites and thin films can be measured accurately by QUIC 

technique.  Broad band ultrasonic transducers are used as a key element in QUIC for 

ultrasonic scanning and imaging. Traditionally acoustic transducers with frequencies 

ranging from 1 MHz to 1.2 GHz are used for imaging. Depth of penetration and frequency 

selection of the transducer are inversely related. Higher frequency transducer allows better 

resolution of images but limits penetration depth whereas low frequency transducer allows 

more penetration depth with low resolution.  

1.5.1 BASICS PRINCIPLES OF SCANNING ACOUSTIC MICROSCOPY 

  
The schematics of scanning acoustic microscopes with broad band ultrasonic 

transducers for generating images is depicted in the Figure 1.11. A ultrasonic transducer is 

typically mounted on a sapphire buffer rod as shown in Figure 1.11. A tone-burst signal 

excites the transducer at driving frequency for generation of a plane sound wave. Sound 

wave propagates through the lens rod down to the concave spherical surface located at the 

end of the lens rod. Ultrasonic wave energy focused at a point by the concave spherical 

surface as shown in the Figure 1.11. The specimen is immersed inside coupling fluid 

between the lens and the focal point of the converging ultrasonic wave. After interactions 

with the specimen, the incoming ultrasonic wave reflects back to the transducer in different 

ways. The wave energy which propagates parallel to the center axis of the sapphire lens 

rod reflect back to the transducer after reflection from the top surface specimen, which is 
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called as normal reflection. Part of the ultrasonic energy transmitted through the specimen 

and reflected at the back surface of the specimen.  The wave energy that hit the specimen 

surface at Rayleigh critical angle, generates leaky Rayleigh wave that propagates along the 

sample surface and leaked back to the fluid and eventually received by the transducer. In a 

typical signal obtain by scanning acoustic microscopy, normal reflection, back side 

reflection and Rayleigh wave are observed.   

 

Figure 1.11 Schematic of a scanning acoustic microscope lens and working principle. 

1.5.2 NONLOCAL EFFECT OF DAMAGE 

 
       Problems where long-range forces exist, the nonlocal interaction between neighboring 

material points prevail. For examples, relaxation of material properties, damage 

reconfiguration, distributed microcracking, microstructural heterogeneity and regeneration 

of stress concentrations, are few examples of such states where nonlocal interactions could 
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be presumed. Bazant [62] showed that nonlocality is exhibited in the phenomena of matrix 

cracking. It is also maintained in the Ref [62] that the generation of microcracks is not 

depended only on the local displacements at the location of the cracks but also depends on 

the displacement that occurs away from the crack [45, 62]. Hence, to investigate the 

material state using high-frequency wave propagation, the constitutive law from continuum 

mechanics is not enough. A suitable kernel function is used to modify the constitutive law, 

to account for the nonlocal effect. The Christofell’s equation of the wave propagation is 

modified using the nonlocal constitutive law, and the eigenvalue problem was solved to 

obtain the nonlocal dispersion curves for different wave modes (quasi-longitudinal and 

quasi-shear) as functions of nonlocal parameters [5]. Experimentally measured wave 

velocities were used to calculate the nonlocal parameters from the dispersion curves. 

Parametric variations of the nonlocal parameters were used to quantify the precursor state 

[5]. 

1.6 ENTROPY AS MEASURE OF MATERIAL DEGRADATION IN COMPOSITES  

 
        Composite structures under operation gradually degrade progressively during fatigue 

loading. Degradation of the material is driven by dissipative process and induce a 

disorder/chaos in the material. Damage Entropy which is understood as disorder/chaos in 

the material as damage. Entropy increases with material degradation in the material [63].  

Heterogeneous microstructure of the composite and material property difference of the 

constituents provide favorable conditions for development of various types of damage 

modes such as interfacial debonding, matrix microcracking, interfacial sliding, 

delamination/interlaminar cracking, fiber breakages, fiber micro-buckling and void-growth 

[8]. Damage development mechanism in composites is very complex process. Often 
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combination of the different damage modes accumulates, interact and lead to change in 

material stress state and local stress-concentration in the composites. Local properties of 

the composites change due loading and aging. Microstructural changes and damage  

induced disorder in the system are quantifiable by ultrasonic techniques [5]. 

1.7 COMPUTATIONAL NDE FOR BETTER UNDERSTANDING OF THE SHM/NDE 
DATA 

 
        SHM/NDE data are employed for the quantitative material state awareness (MSA) of 

the structure. MSA of the structure is performed in terms of initial states of the damage, 

damage types, damage accumulation, and degradation of material properties due to damage 

development. For better understanding of the SHM/NDE data, realistic simulation of wave 

propagation and damage modelling in a structural component are needed. In the subsequent 

section, a brief literature review on existing wave-propagation tools is performed and 

advantage and disadvantages of various techniques are discussed.  

1.7.1 COMPUTATIONAL NDE 

 
        Over the years, researchers have attempted using various techniques to correctly to 

simulate wave propagation in the composite and metallic structure. Finite Element Method 

(FEM) [64], Boundary Element Method (BEM) [65, 66], Indirect Boundary Integral 

Equation (IBIE) [67-70] , Multi-Gaussian Beam Model (MGBM) [71-73], Spectral 

Element Method (SEM) [74], Elastodynamic Finite Integration Technique (EFIT) [75-77], 

Charge Simulation Technique (CST) [78] & Multiple Multi-pole Program (MMP) [79-81] 

have been tried. Shortcomings of all these methods are multiple, as detailed in ref [82]. For 

sake of brevity few relevant ones are discussed. To incorporate any arbitrary geometry in 

the SHM/NDE simulation, the FEM, BEM, IBIE methods are more appropriate. However, 
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the most significant issue in FEM wave modeling comes from the spurious reflection of 

high frequency waves at the multi-scale interfaces [83-85]. Spurious reflection is not only 

an issue at the multi-scale interface but also at the continuum when different element sizes 

are used [86]. FEM is very computationally intensive: it requires huge amount of 

computation memory and execution time. Above all, due to spurious reflection phenomena, 

the FEM results are not very reliable. BEM and IBIE are faster methods and can handle 

any arbitrary problem geometry like FEM; however, the boundaries are discretized by 

placing point source on the boundary and resulting integral equation with singular kernel 

that give rise to the Fredholm integral equation of the second kind; this results in additional 

background computation. EFIT is essentially a finite different method and fares 

comparably better than FEM for modeling wave propagation.  

        Although all those techniques are well established for wave propagation simulation, 

one of the greatest disadvantages of these computation techniques is that to study wave-

damage interaction, the damage path is required to be defined ahead of time. Whereas, in 

the practical scenario, it is almost impossible to predict a damage route. Additionally, it is 

also essential to update the meshing of the domain alongside the damage propagation, 

which makes these techniques also computationally expensive. Hence, a method is required 

which should be capable of handling both damage prediction and wave propagation, 

simultaneously, without much difficulty. It is expected that the predictive models would 

be integrated with the ‘digital-twin [87]’ software (software for the virtual off-line 

interface), such that the material behavior and the sensor signals could be predicted off-

line simultaneously, by the predictive tool. In the near future, it is also expected that the 

structure, structural component or individual material states could be digitally certified for 
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their future missions [87]. This will impact the maintenance efforts significantly in two 

ways, 1) help in predicting unseen events through the dedicated simulations, and 2) saving 

materials from being abandoned based on statistical rules. Peridynamic, a nonlocal 

approach, which has capability in predicting material behavior at different length scale and 

simulating wave propagation, can be used as an efficient technique in computational NDE.     

1.7.2 PERIDYNAMICS-A NONLOCAL APPROACH 

 
        Classical theory of continuum mechanics (CCM) has been used successfully to solve 

problems in solid mechanics. The underlying assumption of CCM is that the material body 

remains continuous before and after deformation. Although, CCM approaches has been 

used successfully to solve problems at macro-scale, it encounters difficulty in the solving 

crack propagation problems, since the mathematical model of the CCM approach uses 

spatial partial differential equation which become undefined at crack location (gradient of 

stress-tensor become undefined). 

 

Figure 1.12 Types of solid mechanics problem modeled by peridynamic approach, (a) 
continuous body, (b) Material body with crack, (c) Discrete particles. 

 

       To overcome the limitations of the CCM approach in solving with the crack 

propagation problem, Liner Elastic Fracture Mechanics (LEFM) [88] was developed. 

Within LEFM framework, crack initiation and growth are modelled by introducing external 

crack growth criteria such as critical energy release rate and which is not part of the  
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governing equation of the CCM approach. Crack surface evolution is started from a pre-

exiting crack [88].  

        LEFM was included in the traditional Finite Element Analysis (FEA) tool to model 

fracture mechanics problem. Special elements are used to model singular stress at the crack 

tip. To model the crack growth, the crack is treated as boundary and meshing of the material 

body need to be updated after each incremental crack growth. A pre-defined mathematical 

equation for crack growth and propagation direction is needed to supply to the FEA model. 

However, there is a major difficulty to obtain the kinetic relation from experiments. Also, 

modelling multiple crack propagation and their interaction in the 3-dimensional domain 

become extremely complex using traditional finite element method. To circumvent the 

difficulty in modelling the multiple crack propagation by FEA, Peridynamic theory was 

proposed.   

      Peridynamic theory (PD) is a nonlocal formulation, which was developed by Silling 

[55, 89-93] in Sandia National Laboratory, is being used successfully to understand 

material behavior at different length scale. The word “peridynamic” was derived from two 

Greek words which are “Peri” and “Dynamic”. In the Greek Language “Peri” means near 

and “Dynamic” means force.   Modelling of continuous body, material body with cracks 

and discrete particles can be performed within a single framework of peridynamic theory. 

In contrast to partial differential equation used in classical continuum theory, peridynamic 

theory utilizes intergo-differential, which makes the approach suitable to solve crack 

propagation problem.  Integro-differential equations of PD approach are valid at the crack 

surface. Additionally, damage parameters are included in the constitutive equations which 
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make peridynamic approach suitable to model crack initiation and crack branching in the 

material, without any special need of defining external crack growth criteria [89].  

 

Figure 1.13 Relationship and major differences of continuum mechanics (local) and 
peridynamic approach (nonlocal). 
 

      In Peridynamic approach, the material body is discretized into number of material 

points where each point has finite volume. Interaction between the material points takes 

place within a finite internal length, which is called as Horizon (shown in Figure 1.13).  

Interaction between two material points depends on material properties, internal length and 

relative distance between particles. Internal length of the peridynamic approach is selected 

based on the nonlocality of the problem. For continuum mechanics problem, internal length 

scale approaches to zero and material points interact with its immediate neighbor whereas, 

atomistic simulation internal length is selected as interatomic distance. Therefore, 
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peridynamic technique can be used to analyze the material behavior across different scale 

[92].  

1.7.2.1 Bond based peridynamic theory 

 
       In bond based peridynamic theory the equation of motion at point x in the reference 

configuration can be written as [89, 94],  

'
'( , ) ( ( ', ) ( , ), ) ( , )xH

u x t f u x t u x t x x dV b x t                                                          (1.26) 

Where H denotes the internal length scale,  is density of the material in the reference 

configuration,  u is the particle displacement, b  is the body force density, 'xV  is volume of 

each material point, and f  is pair wise force function  that material point at 'x  applies on 

the material point x . 

Relative distance and the displacement between the two material points in the 

reference configuration is expressed by,  

 ξ = x x  (1.25) 

 η= u(x,t) u(x,t)  (1.26) 

Relative displacement between the two material points in the deformed configuration 

can be is expressed by, 

  (ξ+η) = (u(x,t)+x) (u(x,t)+x) (1.27) 

     The interaction between two material points 'x and x  is called as bond. The bonds in 

the PD approach behave like a spring element. When bond length between two material 

points exceeds horizon H, the interaction pairwise forces function become zero, such that 

[89, 94], 
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  ( , ) 0f        if    >H                                                                                        (1.28) 

     The pair wise force function is required to satisfy the conservation of the linear 

momentum as follows [89, 94], 

 ( , ) ( , )f f         ,                                                                                     (1.29) 

Eq. 1.29 also called linear admissibility condition. To satisfy conservation of the angular 

momentum following equation must hold [89, 94], 

( , ) ( ) 0f       ,                                                                                             (1.30) 

Eq.1.30 is called angular admissibility condition. The pair-wise force vector between two 

particle acts opposite to each other and is parallel to current relative position in order to 

hold conditions in equations 1.29&1.30. 

In PD, pair-wise force function is derived from a scaler micro-potential function  , as 

follows [89, 94], 

( , ) ( , )f
   






                                                                                                      (1.31) 

Micro-potential of the bond is the strain energy of a single bond. A peridynamic body is 

said to be microelastic if equation (1.31) is satisfied.  

Total strain energy at a point can be defined by following equation [89, 94], 

1
( , )

2E

H

W dV                                                                                                        (1.32) 

The factor of half is included in the equation because each endpoint of the bond share half 

of the strain energy of the bond.  

A linearized peridynamic mode for micro-elastic material is expressed in the following 

form [89, 94]: 
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( , ) ( )f C    ,                                                                                                   (1.33) 

where ( )C   is micro-modulus function for the PD material. 

1.7.2.2 Constitutive models for PD 

 
     To model fracture in a deforming body, a damage parameter is included in the 

peridynamic model. Modified constitutive equation for the peridynamic material can be 

expressed as [89, 94], 

( , , ) ( ) ( , ) ( , )f t c s t
       
 





                                                                            (1.34) 

Where ( )c   is a bond constant, ( , )s   is bond stretch and ( , )    is a history-depended 

scaler value function. Value of  ( , )    is taken as either 0 or 1. 

 ( , ) 1     if ''( , )s t  > 0s   for ''0 t t    

( , ) 0    otherwise                                                                                                    (1.35) 

0s  is the critical stretch of the bond.  Bond stretch is defined by, 

( , )s
  

 


 
                                                                                                      (1.36) 

Local damage at a material point is defined by [89, 94],  

( , , )

( , ) 1 H

H

x t dV

x t
dV





 
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


                                                                                           (1.37) 

1.7.2.3 Bond Constant estimation for isotropic material 

 
      PD bond constant determination of an isotropic material is performed by considering a 

large homogenous body under isotropic extension as shown in the Figure 1.14. A uniform 

stretch s is applied to the all material points to achieve uniform expansion of the material  
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Figure 1.14 Homogenous expansion of isotropic material 

body. Length of a bond before and after deformation is expressed as   and (1 )s  , 

respectively.  

(1 )s     , where s                                                                                         (1.38) 

Force density vector is expressed as, 

 
c

f cs



                                                                                                                   (1.39) 

Micropotential can takes the follwing from by applying equation (1.31) 

2 / 2cs                                                                                                                    (1.40) 

Starin energy at point can be expressed as, 

2 2 4
2
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1 1 4
4

2 2 2 4E

H

cs cs
W dV d

   
   



                                                               (1.41) 

Strain energy density (SED) by applying CCM approach for the same uniform expansion 

of the material body becomes, 

 29

2EW ks                                                                                                                    (1.42) 
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The PD bond constant can be calculated by equating SED obtained from both CCM and 

PD approach, 

4

18k
c


                                                                                                                         (1.43) 

Where k is the bulk modulus of the material.  

1.8 OUTLINE OF THE DISSERTATION 

     The focus of the dissertation is to devise new methods and tools for understanding 

material state awareness of engineered materials through ultrasonic NDE and SHM.  The 

dissertation is divided into two major parts. In the Part-I, material state awareness of woven 

composite is performed using guided Coda Wave Interferometry (CWI) and Quantitative 

Ultrasonic Image Correlation (QUIC) Technique. Additionally, stress-relaxation behavior 

in the composite was quantified by nonlinear ultrasonic technique. Part II of the dissertation 

is focused on development of the new wave propagation modelling tool, called Peri-

Elastodynamic (PED) based on peridynamic theory. QUIC technique was also extended 

for biological system characterization and development of a predictive tool for quantifying 

the internal instability of a biological system.  The organization of the proposed dissertation 

is given below: 

In Chapter-1, background, motivation, various progressive failure model, local and 

nonlocal theories, online and offline ultrasonic inspection techniques and computational 

nondestructive evaluation (NDE) was discussed. 

In Chapter-2, discusses the Material State Awareness (MAW) of composite materials 

through precursor damage state quantification. Guided coda wave interferometry is 

proposed first time for precursor damage state quantitation in composite under fatigue 
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loading. Development of damage in the materials is investigated by using Optical 

Microscopy (OM) and Scanning Acoustic Microscopy(SAM). 

In Chapter-3, Damage development due to precursor damage state is quantified by QUIC 

technique. Results from the CWI and QUIC techniques are correlated to investigate the 

potential of the CWI for precursor damage state quantification. 

In Chapter-4, Stress-relaxation in the composites was monitored by using CWI technique. 

In Chapter 5, Stress-relaxation in the composites was monitored by using acoustic 

nonlinearity of Lamb waves. 

In Chapter 6, a wave propagation tool named as Peri-Elastodyanmic is developed for Lamb 

wave propagation simulation in a plate-like structure. Fundamental lamb wave modes are 

simulated accurately. The technique is verified by comparing dispersion results obtained 

from simulation with those from “Waveform Revealer”.    

In Chapter 7 Peri-Elastodynamic technique is extended for simulation of wave-damage 

interaction in a plate-like structure. Wave reflection and transmission at crack is observed 

from the simulation results. The Peri-Elastodynamic is verified by comparing simulated 

sensor signals with those obtained from the experimental results for both pristine and 

damaged plates. 

In Chapter 8 Summary and conclusion of the thesis. 

In Chapter 9, Other work, QUIC technique is also extended for biomedical research. QUIC 

technique is used for material characterization of a biological system (fungus colony). 

Internal instability such as wrinkles in the medium is measures by acoustic microscopy. A 

predictive model based on incremental stress theory is developed for quantification of 

pressure quantification in the 
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CHAPTER 2 

PRECURSOR DAMAGE ANALYSIS USING ULTRASONIC GUIDED 
CODA WAVE INTERFEROMETRY 

        The early detection and quantification of embryonic precursor damage in composites 

are currently challenging due to lack of an online ultrasonic method. Typical precursor 

damages are developed in the form of matrix cracking, microcracks, voids, micro-buckling, 

local fiber breakage, local fiber-matrix debonding, etc. [8, 95]. These damages can be 

visualized using off-line laboratory-based nondestructive evaluation (NDE) methods, for 

example, X-ray tomography [96], Scanning Acoustic Microscopy [5], Ultrasonic 

immersion scanning [97], etc. However, it is realized that the conventional ultrasonic 

guided-wave-based Structural Health Monitoring (SHM) at low frequencies (~100–~500 

kHz) are not sensitive to these precursor damages, and often demands sophisticated pattern 

recognition algorithms for signal processing, offline. These statistical signal processing 

algorithms sometimes result in heavy computational burden.  

        Ultrasonic guided waves are popular for online NDE and SHM of composites [98, 

99]. Guided waves in a thin composite structure generate two fundamental Lamb wave 

modes, symmetric S0 and antisymmetric A0. In SHM, the fundamental S0 and A0 modes 

are analyzed to find the damages in the composite. The fundamental wave modes are useful 

for detecting the delamination and cracks when the physical size of the damages is 

comparable to the wavelengths of the propagating wave modes between the frequencies  
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Figure 2.1 (a) Condition monitoring of composite structure [6, 100] shows the P point when 
the early detection should be started; (b) Fatigue damage evolution in the composite 
material [95] shows no change in global stiffness when the incubation of embryonic 
damage precursor is underway. 

~100–~500 kHz. However, it was found that these modes are not sensitive enough [101] 

to detect the precursor damage in composites. Damage precursor in composites, like micro-

cracks, fiber-breakages, and crazing, starts to occur during the first 30% of the lifespan of 

the structure, as shown in Figure 2.1a. Currently, the low-frequency online NDE or SHM 

methods cannot detect the damages at very early stage (during the first ~30% of the life of 

the composites). After 80%–90% of the composite life, the interaction between the local 

material damages and the global structural damage is very rapid (Figure 2.1b). Hence, this 

rapid interaction causes a catastrophic failure of a structure. However, it is noted that the 

prelude of this event starts even before 30% of the life of the composites. So, to avoid this 

impending failure of the structure, it is important to implement the ‘material state 

awareness’ through detection of distributed precursor damages as early as possible (i.e., 

during the initial 30% of the lifespan of the composites). It is the objective of this 

dissertation to represent the precursor state using a unique quantified parameter. Low-

frequency SHM is well accepted for detecting macro scale damages in composite but is not 
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used for precursor detection. However, in this dissertation, to overcome the challenge in 

detecting the precursor damages, an online SHM method with Coda Wave Interferometry 

(CWI) capability is proposed.  

        Symmetric S0 and Antisymmetric A0 modes are not sensitive to the small-scale 

distributed damages such as matrix microcracking (transverse and longitudinal cracking), 

fiber breakages, and local fiber-matrix debonding in composites. Thus, to enable online 

precursor monitoring, a few researchers suggest embedding carbon nanotube networks 

[102] or magnetostrictive particles [103] during the manufacturing of the composites. 

These methods require additional material species to be added to the material, which is 

often discouraged. Hence, a method is required that will not alter the constituents of the 

composites but detect the precursor damages online.  

        Here in this dissertation, guided coda wave analysis is proposed. It is reported that 

when there is absolutely no change in the Lamb wave mode velocities, the latter part of the 

signal that reaches after the dominant Lamb wave modes, called “Coda wave”, is highly 

sensitive to the weak changes in the material. The coda wave interferometry (CWI) 

technique is a promising nondestructive technique, which was first used by the seismologist 

to detect the changes in the coda wave velocities in the earth crust during the earthquakes 

[33, 104]. Later, this technique was successfully extended to measure the relative changes 

of wave velocities in the concrete due to the development of the small-scale (~mm) 

damages [105, 106]. The frequency-dependent shifts in the coda wave velocities were 

estimated in the range ~150 kHz–~1 MHz [106]. Thermal effect on the coda wave 

velocities was estimated in [107]. Larose et al. [105] estimated the relative change (𝛁) in  
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the coda wave velocity (V) in concrete in the order of ∇𝑉 𝑉 = ⁄ 10ିସ. With precise 

measurement of the wave velocities, it was found that the CWI was always more accurate 

compared to the conventional time-of-flight measurement from the direct wave analysis. 

Commonly, the CWI analysis was performed using two techniques, (a) doublet [35, 38, 

108], and (b) stretching [105-107, 109] methods. In the doublet method, several time 

windows are selected in the coda part of the signal, and the shift in each time windows are 

calculated using the cross-correlation technique. Although promising, CWI was never used 

for detecting or evaluating the distributed precursor damages in carbon-fiber-composite 

materials.  

        Composite is a heterogeneous medium designed to develop damage precursors in a 

distributed form. These distributed local damages interact with one another and form a 

fracture path when further load is applied. It was found that the coda waves are sensitive 

to these weak changes when they interact with the distributed damages. Perhaps, while 

traveling through a composite specimen, multiple interactions of the Lamb wave causes 

the coda signal affected by the distributed damage. It is identified that if the conventional 

CWI is modified for composites, the method can be a promising online tool for precursor 

damage detection. In this work, using a modified stretching technique, an attempt has been 

made for the detection of precursor damage state in woven carbon-reinforced-fiber-plastic 

under fatigue loading. To verify, prove, and explain the occurrence of the precursor 

damages in the specimens from the CWI method, benchmark studies using optical 

microscopy, Scanning Acoustic Microscopy (SAM), and Scanning Electron Microscopy 

(SEM) are conducted.  
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2.1  CODA WAVE INTERFEROMETRY 
 

       Coda wave interferometry is a technique for monitoring small changes in heterogenous 

material medium over time using ultrasonic wave. While propagating in a strongly  

 

Figure 2.2 A typical waveform recorded at pristine state and 15,000 cycles fatigue 
loading: a) First arrival, b) Coda wave.  

heterogenous material medium, ultrasonic waves are scattered multiple times due to 

heterogeneities and generate late-arriving wave form, called coda waves as shown in 
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Figure2.2b. Small changes in the medium due to due to formation of damages, will result 

in an observable change in the coda waves. Coda wave interferometry uses this sensitivity 

to monitor weak changes in material medium. There are two techniques, namely Stretching 

technique and Taylor series expansion technique, commonly used to measure temporal 

changes in a material medium. 

2.1.1 STRETCHING TECHNIQUE WITH CROSS-CORRELATION 

        If the coda part of the wave signals (the signal that arrives after the Lamb wave modes) 

from two material states (1 = pristine and k = kth material state) are represented as s1(t) and 

sk(t), respectively, then their relation can be written as. 

sk(t) = s1(t(1 + α)) + d(t) (2.1) 

where, α is a relative stretch parameter, and d(t) is the distortion. In the stretching method, 

the time scale of the perturbed state signal was stretched (+ sign) or compressed (− sign) 

by a suitable stretch parameter value, α as tk = t (1 + α). A range of α values was selected 

[−value ≤ α ≤ value], and cross-correlation was performed between, sk[t(1 + α)] and s1(t). 

A value of α that maximizes the normalized cross-correlation was considered as the critical 

stretch parameter (αk) and was used to measure the relative average velocity change in the 

medium [106]. Item α୩ is the relative change of velocity between two material states (1 

and k).  

CrCr(α) =
∫ s୩[t(1 + α)]sଵ(t)dt

୲ା୘/ଶ

୲ି୘/ଶ

ට∫ s୩
ଶ[t(1 + α)]dt ∫ sଵ

ଶ(t)
୲ା୘/ଶ

୲ି୘/ଶ
dt

୲ା୘/ଶ

୲ି୘/ଶ

 (2.2) 
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α୩ = max
஑∈ஐ

(CrCr୩(α)) (2.3) 

where T is the time window selected in the calculation above. 

2.1.2 STRETCHING TECHNIQUE TAYLOR SERIES EXPANSION 

        An alternative approach to calculate 𝛼௞ is presented herein. Using the Taylor series 

expansion of s1(t(1+α)) up to 1st order the Equation (1) can be as follows, 

s୩(t)  =  sଵ(t) + sଵ
ᇱ (t)tα + Higer order terms (2.4) 

As the stretch parameter, α, is very small, the higher order terms in the Equation (2.4), can 

be neglected. α is approximated as follows, 
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By employing the explicit finite difference scheme, the gradient term, 𝑠ଵ
ᇱ (𝑡) can be 

calculated as follows, 

11

1111
1

)()(
)('










jj

jj
j tt

tsts
ts  (2.6) 

where, 1 1 2 2/j j st t t f     , sf  is the sampling rate. Substituting equation (2.6) in 

equation (2.5), relative stretch parameter, 𝛼௞ after the kth material state (here kth fatigue 

interval) is calculated as follows.  
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where N is the total number of data points used in the calculation, it  is the timestamp of the 

ith data, and 
sf  is the sampling frequency. This technique is computationally less 

expensive than the cross-correlation technique and is used to calculate the stretch parameter 

for the long-range signals [110], which is used in this study for the precursor damage 

quantification in composites. 

2.2 PITCH-CATCH ULTRASONIC LAMB WAVE EXPERIMENTS 

        Two high-frequency PZT sensors were attached to the specimens. A 5-count tone 

burst signal with central frequency, fc = 324 kHz, was used for the actuation of the guided 

wave, as shown in the Figure 2.4f. The central frequency ~324 kHz was selected from a 

tuning experiment with the specimen S-A, where the fundamental antisymmetric wave 

mode had a maximum amplitude. Tektronix AFG3021C (25 MHz, 1-Ch Arbitrary 

Function Generator, Tektronix Inc., Oregon, USA) was used to generate the tone burst 

actuation at the interval of 1 ms. Peak to peak amplitude of the burst signal was set to 20 

V for the wave actuation. Tektronix MDO3024 (200 MHz, 4-Ch Mixed Domain 

Oscilloscope, Tektronix Inc., Oregon, USA) was used to record the sensor signals. Sensor 

signals were collected at 50.0 MS/s with 10,000 data points. Online pitch-catch 

experiments were performed keeping the specimen on the loading machine. All benchmark 

studies were performed at the pristine state and after the 300,000 cycles of fatigue. Sensor 

signals using PZT sensors were recorded every 5000 cycles using an oscilloscope (Figure 

2.4c) and a total of 61 data files were saved for each specimen during the 300,000-cycle 

experiment.  
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2.3 EXPERIMENTAL PROCEDURE 

2.3.1 MATERIALS AND SPECIMEN PREPARATION 

        Four-layer woven carbon-fiber composites are used in this study (Figure 2.3a). The 

thickness of each lamina is ~280 μm. Dimension of the specimens, length and width of the 

tabs, and chamfer angles were chosen according to the ASTM D 3039 [111] standards. The 

average length, width, and thickness of the specimens were ~250 mm, ~25 mm, and ~1.5 

mm, respectively. Epoxy 9340 from Loctite (48 h curing time) was used for bonding the 

tabs with the specimens. 

        Next, 7-mm-diameter PZT sensors from Steminc Steiner & Martins, Inc. (Miami, FL, 

USA) were mounted on the specimens using Hysol 9340 (Henkel Loctite, Stamford, CT, 

USA). Eleven (S-A, S-B, S-C, S-D, S-E, S-F S-G, F-L, T-1, T-2 and T-3) specimens were 

prepared. Three specimens (T1–T3) were tested under pure tensile load (Figure 2.3b), one 

specimen (F-L) was tested under fatigue loading to estimate the maximum fatigue life of 

the material type. The fatigue life was intentionally marked at ~1 million cycles when an 

onset of delamination was first detected (Figure 2.3c) in the specimen F-L. However, the 

fatigue test was continued until the end of ~2 million cycles. From the remaining six 

specimens (S-A, S-B, S-C, S-D, S-E), each was tested under tensile–tensile fatigue load up 

to ~30% of the fatigue life, i.e., up to ~300,000 cycles. Note that, S-A, S-B, S-C and S-D 

were used for online precursor damage detection and results are discussed in this chapter. 

Specimen S-F and S-G were used for offline precursor damage detection. Specimen S-E 

was used for both online and offline precursor damage detection and correlation between  
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both techniques are presented in subsequent chapter. Results for specimen S-E, S-F and S-

G are presented in Chapter 3.  

Table 2.1: Specimen Nomenclature 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 (a) Schematic of the specimen geometry and the material used for precursor 
damage experiments.  
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Figure 2.3 (b) Stress-strain curves and failure images from T1 and T3 specimens. 

2.3.2 TENSILE TESTS AND NON-ACCELERATED FATIGUE TESTING 

       Tensile tests were performed on the specimens T1–T3 to obtain the ultimate tensile 

strength of the composite material. Wire lead strain gauges 5 mm in length with size 9.5 

mm× 3.5 mm were mounted on the tensile specimens using standard M-Bond 200 adhesive. 

Tensile load was applied with the displacement control mode at the rate of 0.03 cm/min. 

The average strain rate was 3.25 × 10−5 s−1. National Instrument’s data acquisition system 

(NI-DAQ) was used to acquire the load-strain data at the rate of 3 Hz. Figure 2.3b shows 

the test results from the T1 and T3 specimens (the specimen T2 failed accidentally at the 

stress level ~780 MPa and is discarded from Figure 2.3b). The average maximum strength 

of the material was ~950 MPa. Next, to study the precursor damage initiation, the 

remaining 
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Figure 2.3 (c) Damages that were observed in a woven composite specimen after ~2 
million cycles, delamination started after ~1 million cycles [37, 59]. 
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specimens were tested with the tensile–tensile fatigue loading on an MTS 810 machine, 

with loading frequency of 10 Hz, load ratio R = 0.01 (R = Fmin/Fmax), and maximum load 

kept ~50% of the tensile strength, i.e., 17.8 kN, up to ~300,000 cycles (Figure 2.4a, b). 

During the fatigue testing, at an interval of 5000 cycles, ultrasonic guided Lamb wave 

experiments (Figure 2.4c) were performed using piezoelectric sensors mounted on the 

specimens in the pitch-catch mode. S-A, S-B, S-C, and S-D were used for online precursor 

damage detection and were equipped with piezoelectric wafer active sensors. S-E was used 

for both online CWI and offline SAM and optical microscopy (Figure 2.4d, e) 

investigation. Specimen S-A was decommissioned after 300,000 cycles to perform the 

SAM. The specimen S-A was subjected to similar fatigue loading until 300,000 cycles.  

 

Figure 2.4 (a) Composite specimens that were used for fatigue testing; (b) Experimental 
set-up for fatigue testing; (c) Setup for pitch-catch experiments; (d) Scanning Acoustic 
Microscopy for ultrasonic inspection of the specimen; (e) Digital microcopy for damage 
inspection. 
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Figure 2.4 (f) Gaussian wave signal (tone burst) used for pitch-catch experiments and its 
frequency transformation; (g) Experimental sequence. 

2.4 EXPERIMENTAL DATA PROCESSING 

2.4.1. PRECURSOR DAMAGE GROWTH PARAMETER 

        It was found that the change in the stretch parameter due to the coda wave velocities 

could be incremental in both positive and negative direction with respect to the positive 

time axis. Hence, instead of calculating the stretch parameter by comparing the pristine and 

damaged state signals, as a baseline-free method, incremental stretch parameter is 
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calculated between two signals recorded at two consecutive states ((k−1)-th state and kth 

state) as follows, 
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This helps to avoid the distortion part d(t) in the Equation (1), where two very closely 

correlated signals in the two consecutive fatigue states were used to calculate incremental 

stretch parameter. Overall, the damage growth is quantified using the Precursor Damage 

Index (PDI) from the cumulative sum of the stretch parameters over the total duration of 

the fatigue life. The absolute value of the sum of the stretch parameters was defined as PDI, 

as written in Equation (10). 

𝑃𝐷𝐼 =  อ( ෍ 𝛼௞

ே

௞ ୀ ଵ

)อ (2.9) 

2.4.2 SELECTION OF TIME-WINDOW  

        One important aspect that needs some discussion, is with the selection of the time 

windows in the above analysis. Time windows should be selected such a way that after 

stretching or compressing of the time axis, the perturbed state signal from any loading cycle 

is correlated with the signals from the pristine state or the signals from the previous or 

neighboring fatigue state to minimize the effect of noisy environment.  Figure 2.5a shows 

the time segment of the signals that should be used in our CWI analysis based on both cross 

correlation and Taylor series expansion method. In our analysis, a time window Tw with 8 

μs size was used and was slide over the entire coda part of the signal as shown in the Figure  
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2.5a. To demonstrate the process cross correlation coefficients were calculated at the 

interval of 8 μs for the specimens S-A, S-B, S-C, S-D & S-E as shown in Fig. 2.5b-2.5f. 

From the figure it is evident that in the S-A specimen good correlation was obtained until  

 

 

 

 

 

 

 

 

 

Figure 2.5 (a) Sliding coda window technique operated on two consecutive signals; (b) 
Cross-correlation factors and corresponding stretch parameters obtained at different time 
from the specimen S-A; (c) Cross-correlation factor and corresponding stretch parameters 
obtained at different time from the specimen S-B; (d) Cross-correlation factor and 
corresponding stretch parameters obtained at different time from the specimen S-C; (e) 
Cross-correlation factor and corresponding stretch parameters obtained at different time 
from the specimen S-D; (f) Cross-correlation factor and corresponding stretch parameters 
obtained at different time from the specimen S-E. 

296 μs. But afterwards the coda waves were uncorrelated and random. The random part of 

the coda wave signals is not of any interest in our analysis. Hence, we call ‘sweet coda 

window’ where the coda wave analysis should be performed and must be identified for 

each specimen. In our work the ‘sweet coda window’ windows were found between [136 

μs - 296 μs], [133 μs - 290 μs], [134 μs - 299 μs], [129 μs - 292 μs], and [138 μs - 297 μs] 
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for S-A, S-B, S-C, S-D and S-E, respectively. Although seems laborious, with a simple 

MATLAB code it took few seconds to obtain the ‘sweet coda windows’. 

2.5 RESULTS 

2.5.1 UNDERSTANDING THE STRETCH PARAMETER 

       Coda part of a guided wave ultrasonic signal is affected by multiple scattering and 

reflection of the propagating Lamb wave modes. It was found that the coda part of the 

signals preserves the shape of the coda wave packets between the two consecutive loading 

intervals. However, the phases are shifted in time. It is to be clearly noted that the signal 

analyzed in this dissertation are observed during the first 30% of the lifespan of the 

specimens (See Materials and Methods). During this first 30% of the lifespan, it is 

confirmed that there were no phase shifts (Figure 2.6a) in the Lamb wave packets 

consisting of symmetric and antisymmetric wave modes. However, such shifts (Figure 

2.6a) are evident from the coda part of the signals. The phase shifts observed in the coda 

part of the wave signals are independent or decoupled from the first arrival of the Lamb 

wave modes. This unique phenomenon in composite was not reported before and reported 

for the first time herein. Two sensor signals, one after 100,000 cycles of fatigue loading 

and another after 110,000 cycles of fatigue loading, are presented and compared in Figure 

2.6a to prove the above claim. Phase shifts in the Lamb wave signals due to the precursor 

damages is zero in Figure 2.6a. However, the phase shifts in the coda wave signals are 

significant, and in fact, these shifts are very predictable. Thus, the traditional opinion about 

the randomness of the coda signals in the composites is incorrect. Their predictive behavior 

is demonstrated in the Figure 2.6b, c. 
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Figure 2.6 (a) A typical comparison between two sensor signals obtained after two 
consecutive material states, which shows that the first arrival of Lamb wave signals are 
unaffected, but the coda wave signals are time-shifted; (b) A conceptual schematic showing 
the relation between the positive and the negative stretch parameters with coda wave 
velocity between two consecutive material states; (c) A conceptual schematic showing the 
change in stretch parameter over the fatigue cycles and a typical scenario when the 
precursor damage event could be identified.  

(a) 

(b) (c) 
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A conceptual schematic describing the meaning of the parameter used in this dissertation 

is presented in Figure 2.6b, c. A few statements are deduced based on the knowledge 

obtained from the data and are written below: 

A positive (+) stretch parameter (𝛼௞) is defined, when it is required to pull the coda signal 

from the (𝑘) state towards the positive time axis to match the previous signal from the 

previous fatigue interval (𝑘 − 1). This means that the  +𝛼௞ is to compensate the increased 

coda wave velocity. 

A negative (−) stretch parameter (𝛼௞) is defined, when it is required to push or squeeze the 

coda signal from the (𝑘) state towards the negative time axis to match the previous signal 

from the previous fatigue interval (𝑘 − 1). This means that the −𝛼௞ is to compensate the 

decreased coda wave velocity. 

Next, using the definition of PDI in Equation (10), it is observed that when the stretch 

parameter flips its sign from negative to positive or positive to negative, the PDI decreases 

or increases, respectively. 

It was found from the fatigue experiments that the stretch parameter is usually negative for 

the decreasing wave velocity, which should give rise to the PDI. However, after a sudden 

peak in the negative stretch parameter, the stretch parameter switches its sign to the 

positive, whenever the negative stretch is maximum. This makes the PDI decrease due to 

the increase in the coda wave velocity. Again, this is specific to the coda wave velocity 

only.  
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Almost every time when the stretch parameter switches to positive at the end of any 

material state k, it is observed that at the end of the following state, k + 1 resulted inevitable 

negative stretch parameter. The reason for this phenomenon is explained in the Discussion 

section.  

The above is not applicable for the Lamb wave modes that arrive first. In case of macro-

scale damage, the resulted slowness in fundamental Lamb wave modes result 

monotonically increasing damage index, but this is not the case reported in this dissertation.  

It is emphasized again that the decrease in the PDI happens only and only due to the coda 

wave characteristics during the precursor events. A decrease in PDI is an indication of 

accumulated damage due to precursor in the composite which cannot be ignored and must 

be reported.  

It is reported herein that these unique features are found to be the pivotal in studying the 

precursor damage in composites using the guided coda wave.  

2.5.2 DAMAGE GROWTH QUANTIFICATION USING PDI 

        Damage growths in five specimens S-A, S-B, S-C, S-D, and S-E were quantified with 

the increasing number of fatigue cycles (50,000 cycles to 300,000 cycles). The precursor 

damage index (PDI) was calculated employing both the cross-correlation and the Taylor 

series expansion technique (Figure 2.7). It is evident that with the help of the stretch 

parameter obtained from the cross-correlation and the Taylor series expansion method, 

overall the cumulative PDI increases with the fatigue cycles in all the four specimens, 

indicative of material degradation. However, few specific peaks and dips were observed in  
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Figure 2.7 Precursor Damage Index (PDI) and stretch parameter plots for specimens, (a) 
S-A, (b) S-B, (c) S-C, and (d) S-D. Precursor events are marked using the red rectangles; 
all specimen shows precursor initiation near ~120–160 k fatigue cycles. 

the PDI from both the methods at certain intervals, as explained in Figure 2.6c. Lifespan 

of the specimens under operation, simulated by the number of fatigue cycles associated 

with these fluctuations, are consistent between these two methods. These fluctuations are  



www.manaraa.com

57 

even consistent among all the specimens. Thus, it is evident that the PDI has indicated a 

physical phenomenon which is realized to be the indicators of precursor damage in 

composites. 

2.6 DISCUSSION 

2.6.1 EXPLANATION OF PDI DATA 

        A peak in the PDI corresponds to the decrease in the wave velocity in the guided coda 

wave signal (defined as negative stretch, see Figure 2.6b), whereas a dip in the PDI 

correspond to the increase in the wave velocity in the coda signal (defined as positive 

stretch, see Figure 2.6b, c).  

      From here onwards in this dissertation, the ‘wave velocity’ is synonymous with the 

wave velocity of the coda wave signal but does not represent the fundamental Lamb wave 

mode velocity by any means. The decrease in the wave velocity in the coda wave signal 

(i.e., negative stretch) is due to the distributed damages at the microscale, which led to the 

local degradation of the material properties and local stress concentrations, whereas, the 

increase in the wave velocity in the coda wave signal (i.e., positive stretch) is due to the 

microstructure reorientation and relaxation of the local stress concentrations. The increase 

and the decrease in the coda wave velocities are manifested by respective decrease and 

increase in the PDI. Almost every time when the stretch parameter switches to the positive 

at the end of any material state k, it is observed that the following state k + 1 resulted 

inevitable negative stretch parameter. With the gradual increase in the distributed damages, 

the material was degraded and was locally stressed, however, there is a limit to 

accommodate the local stress concentrations and suddenly the material tends to reorganize 
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itself by relaxing the stresses. This causes an inevitable negative stretch followed by a 

positive stretch. Hence, the sudden decrease immediately followed by the increase in the 

PDI can be explained by the local formation of microscale defects and gradual healing or 

microstructural reorientation, which periodically takes place inside the composite 

specimens during the fatigue experiment. To investigate and explain this phenomenon, 

three peaks from the Figure 2.7a are selected after 75,000, 140,000, and 185,000 cycles, 

respectively, with their neighboring points. Slopes between the points (P1, P2, and P3) at 

70,000, 75,000, and 80,000 cycles, respectively, are shown in Figure 2.8. The slope of the 

PDI curve between two consecutive fatigue intervals (at 5000 cycles) could decrease and/or 

increase with the loading cycles. While analyzing the PDI peak designated as (a) in Figure 

2.7a, it can be found that the slope of the curve between P1 and P2 is positive, and slope 

between P2 and P3 is negative. While investigating the peaks designated as (b) and (c), 

similar phenomena can be observed. To calculate the stretch parameter at P2, the coda 

wave of the two consecutive signals (70,000 and 75,000 cycles) are compared as shown in 

the Figure 2.8a. It is observed from the figure that the phase of the coda part of the signal 

at the end of 75,000 fatigue cycles, leads the phase of the signal at the end of 70,000 fatigue 

cycles. It signifies that the average relative wave velocity in the material is decreased due 

to the initiation of new local damages. However, at P3 (after 80,000 cycles), the relative 

wave velocity is suddenly increased and can be concluded from the positive phase shift 

between two signals collected after 75,000 cycles and 80,000 cycles of fatigue loading. 

The stretch parameter at locations P1, P2, and P3 are calculated as 0.00029, −0.0042, and 

0.0029, respectively, which corresponds to 0.03%, −0.42%, and 0.29% change in the 

average wave velocity between the two successive loading intervals. It is also interesting  
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Figure 2.8 Close investigation of the peaks a, b, and c, in the PDI indicated in Figure 2.7: 
figures show the phase shifts between two consecutive coda wave signals that resulted in 
the peaks at a, b, and, c in the PDI with P1, P2, and P3 being the PDI data points, see Table 
1.2 
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to note that, irrespective of the direction along time, the magnitude of the phase difference 

between points P2 and P3 is always higher compared to the phase difference between 

points P1 and P2, as evident from the Figure 2.8a–c. This is also in agreement with the 

calculated stretch parameters, respectively. Using a similar process, the percent changes in 

the relative wave velocity between two successive fatigue intervals were calculated at the 

peaks located at (a), (b), and (c) in Figure 2.8a and are listed below. 

      Table 2.2: Percent change in relative wave velocity. 

 
P1 P2 P3 

Figure 2.8a 0.03% −0.42% 0.29% 

Figure 2.8b −0.02% −0.15% 0.17% 

Figure 2.8c −0.07% −0.21% 0.22% 

 

      It is identified that whenever there has been a change in the sign of the stretch 

parameter, from positive to negative or from negative to positive followed by an immediate 

positive stretch or negative stretch value, respectively, it is a potential indication of the 

precursor damage in the specimen. This unique and consistent phenomenon will help 

devise new damage detection algorithm for online precursor damage quantification. After 

300,000 cycles of fatigue loading, all the specimens were visually healthy and free from 

any damages or delamination(s). Hence, apparently, the strengths of the specimens are not 

compromised and should remain the same ~950 MPa. However, when the specimen S-H  
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was tested under pure tensile load, which was subjected to similar loading cycles like in S-

A to S-D, it failed at ~790 MPa. This concludes a ~17% decrease in total strength of the 

material after 30% of the life of the material due to the material degradation due to the 

precursor damages. 

2.6.2 PROOF OF DAMAGE DEVELOPMENT USING OPTICAL MICROSCOPY 

       Optical microscopy imaging was performed on the composite specimens to examine 

the development of the micro-cracks inside the specimens. At the pristine state, very few 

damages were present in the form of local voids caused by manufacturing defects in the 

specimens (max. size ~±5 µm). However, it is evident from the microscopy images that 

the density of the microstructural damages increased due to the fatigue loading. Matrix 

cracking, fiber breakage, and localized inter-laminar delamination were observed at the 

end of the ~160,000 and ~300,000 cycles. The average size of the matrix-cracks was 

observed close to ~224 μm. Large-scale damages such as edge delamination were not 

observed in the specimens. To investigate the development of the precursor damages across 

the width, the specimen S-A was decommissioned and was cut into three pieces (Figure 

2.9a) after 300,000 cycles of fatigue loading. Pre-delamination, fiber separation, and fiber 

disbond, voids from fiber slippage, and interlaminar delamination crack joining two 

adjacent matrix cracks are evident in the specimen S-A (Figure 2.9a). It is evident that the 

precursor damages were initiated. 

2.6.3 DAMAGE CHARACTERIZATION USING SAM  

       Scanning Acoustic Microscopy (SAM) was performed on the specimen to investigate 

the damage developments on the surface as well as inside the specimens, which were not- 
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Figure 2.9 (a) Optical microscopy images of the decommissioned specimen S-A at the end 
of 300,000. 

 

(a) 
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accessible by the Micro-optical microscopy. SAM method is previously described 

elsewhere and the details are omitted herein. TSAM is a laboratory-based nondestructive 

method. SAM was performed on the specimen S-E at every ~30,000 cycles until 300,000 

cycles. Specimen S-E was also simultaneously investigated using the PDI analysis at every 

5000 cycles to have a comparative study. To investigate the status of the specimens S-A to 

S-D, S-A was decommissioned and was investigated using SAM after 300,000 cycles. 

 

Figure 2.10 Scanning Acoustic Microscopy images at pristine state, 160,000 cycles, and 
300,000 cycles. 

2.6.4 SAM ON THE DECOMMISSIONED SPECIMEN S-A 

       After the specimen S-A is decommissioned, SAM was performed using high 

resolution ~100 MHz ultrasonic transducers, as shown in Figure 2.10. Matrix cracking was 

clearly visible on the surface of the specimens. A couple of pre-delamination sites were 

also observed (Chapter 3, Fig.3.8). Additionally, degraded materials properties were 

observed beneath the pre-delamination site. Multiple immature interlaminar delamination 

tracks were observed joining two matrix cracks or the tracks from the matrix-fiber 

disbonds. Together, it is concluded that the precursor damages are initiated in the 

composite  
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specimens during as early as 30% of the life of the material. Using online CWI analysis 

such precursor damage events can be identified. A precursor damaged state can 

compromise ~17% of the ultimate strength of the material.  

2.7 CONCLUSIONS 

       The objective of chapter was to device and prove the applicability of a reliable online 

precursor damage detection method. This was achieved by analyzing the coda part of the 

guided wave signals which are usually discarded in the conventional damage detection 

methods used in SHM. The proposed modified coda wave interferometry (CWI) created 

an opportunity to reliably detect precursor damage state in the materials. The statement is 

validated via multiple benchmark studies that show the actual state of the materials through 

images. In this work, fiber composite specimens were tested under high-cycle-low-load 

(HCLL) fatigue loading to develop progressive damage inside the specimen within their 

30% of life calculated to be ~300,000 cycles. The modified CWI technique based on the 

stretching method was used for the first time for damage detection and quantification in 

the composite material under fatigue loading. It is identified that whenever there has been 

a change in the sign of the stretch parameter (in the coda wave) from positive to negative 

or from negative to positive followed by immediate positive stretch or negative stretch, 

respectively, it is an indication of the precursor damage in the specimen.
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CHAPTER 3 

PRECURSOR DAMAGE ANALYSIS AND QUANTIFICATION OF 
DEGRADED MATERIAL PROPERTIES USING QUANTITATIVE 

ULTRASONIC IMAGE CORRELATION (QUIC)

        To predictively conclude the material state during the precursor, the microcontinuum 

mechanics-based features hybrid with the high frequency ultrasonic (>~25 MHz) is 

proposed in this dissertation. With previous research [10,11] it was found that the high 

frequency (>~25 MHz) Ultrasonic wave, propagated through the composite material, 

interacts with the precursor damages and potentially carries the features that are linked to 

the local degradation of the material properties. However, these hidden features are subtle 

and sometimes confusing to make a conclusion. Opposing the existing norms Quantitative 

Ultrasonic Image Correlation (QUIC) is devised with the help of high-frequency Scanning 

Acoustic Microscopy (SAM) [12] and nonlocal mechanics. Acoustic microscopy was 

previously used for quantifying the residual stress [13] and determining the local 

mechanical properties [14–16]. However, was never utilized for the precursor damage state 

quantification. Here in the QUIC, the wave signal at each pixel of an ultrasonic image is 

analyzed in the context of nonlocal mechanics. 

Nonlocal mechanics [17] considers the effect of all the neighboring material points on 

a parent material point of interest, unlike the continuum mechanics, where the constitutive 

law is valid only at one point. In the precursor state in a distributed sense, the neighboring 

material points interact with each other to reconfigure/reorient themselves to relax the local  
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stress concentrations, loosening or hardening the material. Previously nonlocal 

mechanics [17] was studied for failure analysis but was never studied for quantifying 

precursor damage state. In the following paragraph, the material state awareness about the 

precursor damage states is discussed.  

Material state awareness with precursor is knowledge-based information about a state 

of the material that is not necessarily damaged with respect to the macro scale interpretation 

of the cracks/delamination. During the operation, due to compromised material properties 

at the lower scales, there is a potential for generating the distributed damages. Material 

state awareness should be a scale-dependent concept. Say for example a material with a 

crack or delamination with a 1 mm size (macroscale) has a larger footprint of damage 

around that 1 mm x 1 mm pixel area at the lower scale (microscales). It can be argued that 

when discrete macroscale damage is detected by a conventional nondestructive evaluation 

(NDE) method, several microscale damages have already taken place in the material in a 

distributed sense. Currently, such damage state cannot be quantified. Material properties 

are degraded even far away from that discrete damage sites. As mentioned before, such 

states are non-static, dynamic or/and rather chaotic.  

3.1 QUANTIFICATION OF DEGRADED MATERIAL PROPERTIES 

        Based on the above discussions, it can be said that the precursor damage state of the 

material is a spatiotemporal function of the progressive damage state of the material which 

cannot be predictively incorporated in the progressive failure models. Here, for the 

awareness of the material state, an attempt has been made to quantify this chaotic state of 

a material by calling the ‘precursor damage state’, such that an appropriate quantified  
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parameter can be used to sacrifice the material properties in progressive composite failure 

models. The damage mechanics approach always had an advantage over other approaches 

[18]. In the damage mechanics-based approach, damage tensors are used to degrade the 

local material properties [19,20], and failure mechanisms are introduced relating the 

damage variables to the strain energy release rate. Damage development laws depend on 

few failure criteria, such as exceeding the local stress above a specified, designed value. 

These criteria are based on the material parameters used in the failure equations, which 

depends on the material characteristics that are either heuristically measured from the 

specimen load tests or just randomly assumed. This research may provide an opportunity 

to rethink these criteria in the progressive failure models where quantified damage 

parameter called ‘damage entropy’ can be used to sacrifice the material properties, 

predictively as opposed to the current random processes. In the following paragraph, the 

term entropy is explained in the light of the precursor damage state. 

Entropy is a mathematical definition that is associated with a naturally changing 

chaotic system. Entropy measures the degree of disorder or the randomness of an inherent 

property of a system. When a composite material is subjected to fatigue loading, at different 

locations of the composite, the local stiffness changes randomly due to the microstructural 

reorientation and the development of distributed damage. This process is irreversible and 

hence, could be defined in terms of an increasing entropy at a given time point, that 

represents the cumulative sum of the probability of different possible states of the system. 

To quantify the change in this chaotic material system, quasi-longitudinal wave velocity 

(along thickness) is calculated at each pixel point using acoustic microscopy. Thereafter, 

nonlocal parameters are calculated from the theoretical dispersion curves. Nonlocal 



www.manaraa.com

68 

parameters were then used to calculate an irreversible quantified parameter that is tied to 

the damage information and hence the ‘damage entropy’ term is introduced. 

3.2 THE PROPOSED STUDY 

        In this study, the QUIC is proposed with very high frequency ultrasonic between ~25 

MHz–~100 MHz because the high-frequency waves are sensitive to the small-scale 

damages. First, the high-frequency SAM images with the wave velocity data recorded at 

each pixel point are correlated. Then QUIC tracks every pixel [11,21] over the total loading 

period and quantifies the chaotic state that evolves in the composite specimens. 

Additionally, to confirm the visualization of the fluctuation in the nonlocal parameter, 

Micro-optical microscopy using Keyence VHX-5000 series digital microscope (Itasca, IL, 

USA) was used. It was found that over the course of the material life, initially few pixels 

on the material were comparatively more compromised in terms of wave velocity than the 

other pixels. With the QUIC the compromised pixels were identified as local areas with 

precursor damages and was verified with the micro-optical microscopy images. Following 

the trend of the damage sites, after the 30% of the composite life, damage initiation was 

identified using SEM on a decommissioned specimen, where the internal precursor damage 

states were explicitly visualized. 

3.3 EXPERIMENTAL PROCEDURE 

3.3.1 COMPOSITE FATIGUE TESTING 

        In this study four-layer woven carbon-fiber composite material was used. The 

thickness of each lamina was 280 μm. A 2D woven structure is shown in Figure 3.1. 

Dimensions of the specimens are chosen according to the American Standard for Testing 
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and Material standard, ASTM D 3039 [22], as shown in Figure 3.1a. The average length, 

width and thickness of the specimens were ~249.7 mm, ~24.7 mm, ~1.5 mm. 

 

 

Figure 3.1 (a) Schematic of specimen geometry: Pristine internal structures are shown by 
digital microscope and scanning acoustic microscope; (b) Damages in woven composite 
specimen observed after ~2 million cycles, delamination started after ~1 million cycles 
[59]. 

        A total of Twelve specimens (T1, T2, T3, F-L, S-A, S-B, S-C, S-D S-E, S-F, and S-G) 

were prepared as maintained in previous chapter. Three specimens T1-T3 were tested under 

pure tensile test using MTS 810 to estimate the ultimate load. The average ultimate load 

was 8200 lbf or 36.43 kN. Further only ~50% of the maximum load was used to create the 

tensile–tensile fatigue sequence with a load ratio R = 0.01 (R = Fmin/Fmax). The specimen 

F-L was used to estimate the fatigue life of the composite. The F-L specimen did not fail 

until ~2 million cycles, but significant damages were observed when it was placed under the 
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light microscope, SAM and SEM (Figure 3.1b). S-E, S-F, and S-G were used for offline 

precursor damage detection by Quantitative ultrasonic image correlation technique (QUIC).  

        Delamination was first observed at the end of ~1 million cycles, marked as the fatigue 

life of the material. ~30% of that fatigue life, i.e., 300,000 cycles of fatigue loading were 

further considered for precursor damage analysis in the remaining four (4) specimens (S-

A, S-E, S-F, and S-G). S-E, S-F, and S-G were used for offline precursor damage detection 

using QUIC, S-A specimen was tested in the similar loading environment and was 

decommissioned at the end of 300,000 cycles. SEM was performed to visualize the 

precursor indications. During the fatigue testing until the 300,000 cycles, the experiments 

were stopped every 10,000 cycles. QUIC and micro-optical microcopy imaging were 

performed at every interval on the S-E, S-F, and S-G specimens. 

3.3.2 EXPERIMENTAL PROCESS FOR QUIC 

        Gage areas on the specimens S-E, S-F, and S-G, were scanned using the SAM (25 

MHz, 50 MHz, and 100 MHz). Gage area of each specimen was divided into three different 

zones, Area-A, Area-B, and Area-C, respectively as shown in Figure 3.2. The specimens 

were submerged in to the water. Scanning probe was lower to the water level to focus the 

transducer and the scans were performed. Scans were performed every 10,000 cycles until 

the scheduled 300,000 cycles using ~25 MHz focused lens. To visualize the degraded 

material properties or development of micro-cracks across the depth of the specimens, ~50 

MHz, and ~100 MHz transducers were used to perform the C-scans and X-scans. More 

details on this technique can be found in the operation principles of scanning acoustic 

microscopy (SAM) [23,24]. 
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Figure 3.2 (a) Schematic of Scanning Acoustic Microscopy (SAM); (b) A typical A-Scan 
signal at a pixel point; (c) scanning areas on the specimen; (d) quasi-longitudinal wave 
velocity profile on a selected area. 

3.3.3 BENCHMARK STUDY USING MICRO-OPTICAL IMAGING 

       Digital Microscopy (VHX-5000 series, Keyence Corporation of America, Itasca, IL, 

USA) imaging was performed at the interval of 10,000 cycles up to 300,000 cycles. 

Specimens were viewed at different magnifications between 0.1× and 50×, nondestructively. 

Similar to the QUIC, Area-A, Area-B, and Area-C were selected, and images were taken 

every 10,000 cycles. 

3.4 THEORETICAL DEVELOPMENT OF QUIC 

3.4.1 DAMAGE STATE QUANTIFICATION USING NONLOCAL CONTINUUM THEORY 

       In problems where long-range forces exist, the nonlocal interaction between neighboring 

material points prevail. For example, relaxation of material properties, damage  
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reconfiguration, relaxation and regeneration of stress concentrations, are few examples of 

such states where nonlocal interactions could be presumed. To investigate the material state 

using high-frequency wave propagation, the constitutive law from continuum mechanics 

is not enough. Hence, a suitable kernel function was used to modify the constitutive law. 

The Christofell’s equation was modified using the nonlocal constitutive law, and the 

Eigenvalue problem was solved to obtain the nonlocal dispersion curves for different wave 

modes (quasi-longitudinal and quasi-shear) as functions of nonlocal parameters. 

Experimentally measured wave velocities were used to calculate the nonlocal parameters 

from the dispersion curves. Parametric variations of the nonlocal parameters were used to 

quantify the precursor state. A detailed discussion on this technique for damage state 

quantification can be found in references [25,26]. The basic formulation is briefly 

discussed herein. 

According to the continuum theory, stress-strain relation can be written at a point x in 

a body Ω as follows 

𝜎௜௝(𝑥) = 𝐶௜௝௞௟(𝑥)𝜀௞௟(𝑥)  (3.1) 

where 𝐶௜௝௞௟(𝑥) are the constitutive material properties at a point x. By employing the 

nonlocal approach, stress-strain relation at a point 𝑦(𝑥௡) in the material body is modified 

by introducing the nonlocal kernel function as follows, 

 ( ) ( ) - ( )ij y C x H y x x dijkl kl  


 (3.2) 

where, 𝐻(|𝑦 − 𝑥|) is the nonlocal kernel function.  

Equation of motion is written as, 
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                                                           ,ij j i iF a                                                        (3.3) 

By substituting the non-local constitutive law in the equation of motion (Eq.3.3), the 

integro-differential form of the equation at the point y can be written as, 

   ..
( ) - ( ) ( ) ( )x H y x d x F y y ukij i ikx j

  


  


 (3.4) 

Equation (3.4) is modified by using an operator L. The operator L is defined to make 

the kernel function a Green’s function.  

 
..

( ) - - ( ), k
C y L y u LF yiijkl kl j ik    

 
 

 (3.5) 

Bi-Helmholtz type operator L can be written as Lazar et al. [27] 

2 2 2 4 4 4(1 )0 0L         (3.6) 

where, 2  is a Laplace operator,  𝜏  and 𝜆 are the intrinsic length scale parameters, 𝜏 = 𝜏଴

  and 𝜈 = 𝜈଴  . The homogeneous nonlocal Christoffel equation is viz., 

 
2 ..( , )

- ( , ) 0
u y tkC y L u y tkijkl ikx xj l

 







    
   

 (3.7) 

By substituting the displacement function, exp( . - )u A ik x i tk k  , in the Equation (3.7), 

viz. 

   2 2 42 4- 1 - 002

Tikk k k ikx
  

 
 

 
 
  

 (3.8) 
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where, 
2 2 2 2= ( + + )1 2 3k k k k , defining, 

 
Ω = 2

Tik
ik ρ x ω

, Equation (3.8) is rewritten as follows, 

1 22 4( - ) - -0 2 kik ik ik
k

    
  
  

    
0  (3.9) 

By solving the Eigenvalue problem, the dispersions of the wave modes are obtained 

for different 𝜏଴ parameters. Only the positive roots of the equation were considered. The 

nonlocal parameter 𝜈଴ was first introduced by Lazar et al. [27] to influence the dispersion 

relation further down the scale with a condition 𝜏଴ >  √2𝜈଴. In this study a smallest non-

zero value of 𝜏଴ was arbitrarily selected and was assumed to be 0.0017. Applying the 

condition given in reference [27] 𝜈଴ was calculated to be 0.0012 and was kept constant in 

this study. Next, the dispersion of the quasi-longitudinal wave mode in woven carbon-fiber 

composite specimens was calculated using the Equation (3.9). Material properties 

(obtained from the vendor, listed in Ref. [28]) were used to calculate the wave velocities 

are listed below. 

⎣
⎢
⎢
⎢
⎢
⎡
81.64 27.74
27.47 76.98

27.74 0
15.51 0

0 0
0 0

27.74 15.51
0 0

76.98 0
0        5

0 0
0 0

0          0
0          0

0         0
0         0

5 0
0 5⎦

⎥
⎥
⎥
⎥
⎤

 GPa  

The dispersions of the wave velocities obtained from the nonlocal Christoffel equation 

depend on the frequency and the nonlocal parameters presented in the Figure 3.3a. Further 

to find the relation between the change in the wave velocity concerning the nonlocal 

parameters at a fixed frequency (here ~25 MHz), a nonlocal-wave velocity plot is created 

as shown in Figure 3.3b. Through regression analysis, a mathematical equation for the 
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relation between the nonlocal parameter and the quasi-longitudinal wave velocity in the 

composite material was obtained. Further, to calculate the nonlocal parameter from the 

equation, experimentally measured wave velocities (Figure 3.2) were used. The step-by-

step processes to calculate the quasi-longitudinal wave velocity across the thickness of the 

composite specimen and the quantification of the precursor state at different fatigue 

interval are discussed below [56-58, 60, 61, 112-114]: 

 Z-scans, where SAM scans were performed at different defocus distances across 

depth using a broadband ~25 MHz transducer manufactured by PVA Tepla AG, 

Wettenberg, Germany. Scans were performed at three different areas (Area-A, 

Area-B, and Area-C) on the specimen to cover the whole gage area as shown in the 

Figure 3.2c. Each area was discretized into a number of pixels, and the A-scan 

signal at each pixel point was recorded for further analysis. 

 A typical A-scan signal at a pixel point is shown in the Figure 3.3b. The first wave 

packet in the signal is the normal reflection of the incident wave while the second 

one is the backside reflection of the transmitted wave. 

 Time-of-flight (TOF) between the front and backside reflections can be seen as the 

time taken by the transmitted wave to travel through the specimen. TOF was 

calculated at each pixel point. By dividing the wave path (twice the thickness) of 

the specimen by TOF, quasi-longitudinal wave velocity at each pixel point was 

obtained. Then the 2D distributions of the wave velocities were obtained at three 

different scanning areas as shown in the Figure 3.2c.  
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 Next the nonlocal parameter, τ, were obtained from the nonlocal dispersion curve 

at ~25 MHz as shown in Figure 3.3b at each pixel. 

 The nonlocal parameter obtained at the pristine state is called the intrinsic material 

property adjuster, 𝜏௔, while the parameter calculated at different fatigue interval is 

called the intrinsic material state parameter, 𝜏௦. Next, the average and the standard 

deviation of the intrinsic material state parameters were calculated from the data. 

 The overall damage state of the material was quantified by the Nonlocal Damage 

Entropy (NLDE), using the above mentioned nonlocal parameters calculated at each 

pixel, 

𝑁𝐿𝐷𝐸 = ෍ ቤ
𝜏௔

ଶ + 𝜏௦
ଶ

2𝜏௔
ଶ

ቤ
௜

ே

௜ୀ଴

 (3,10) 

where i denotes the i-th pixel on the specimen, and the NLDE is the summation of the 

nonlocal parameters (Equation (3.10)) over all the pixel points. 

 

Figure 3.3 (a) Dispersion of quasi-longitudinal wave mode in carbon-fiber composite 
specimen; (b) variation of the nonlocal parameter at ~25 MHz 

(a) (b) 
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Cumulative damage growth was then calculated to obtain the damage growth under the 

fatigue loading. The detailed process is shown in Figure 3.4. 

 

Figure 3.4 Process flow diagram showing the steps for damage quantification using 
nonlocal physics. 

3.4.2 DAMAGE STATE QUANTIFICATION FROM THE EVALUATION OF STIFFNESS 
DEGRADATION 

In this study, the quasi-longitudinal wave velocity was measured at each pixel point 

along the thickness (direction-3) direction. The pixel points are distributed over the 

scanning areas Area-A, Area-B, and Area-C as described in the previous section. At a 

regular fatigue interval, the velocity profiles were obtained from the measured quasi-

longitudinal wave velocity at each pixel point. Damage tensor was then calculated using a 

wave slowness model similar to the stiffness degradation model described in reference 

[29]. 

1 - 0
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 (3.11) 
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(3.12) 

where Cij is the stiffness tensor. To calculate the degradation of the material properties 

across the thickness of the specimen, stiffness component (C33) in Equation (3.11) was 

replaced by the measured quasi-longitudinal wave velocity as follows, 

𝐷ଷଷ
ே = 1 −

𝑞𝐿ଷଷ
ே

𝑞𝐿ଷଷ
଴  (3.13) 

where, 𝑞𝐿ଷଷ
଴  is the quasi-longitudinal wave velocity at the pristine state of the composite 

specimen along the direction-3, and 𝑞𝐿ଷଷ
ே  is the wave velocity after N-th fatigue cycle in 

the same specimen. Then the cumulative damage growth was calculated as, 

𝐷𝐼 = ෍ 𝐷ଷଷ
௞

ே

௞ୀଵ

 (3.14) 

Results are presented and discussed in the Result and Discussion section. 

3.4.3 PROBABILITY DISTRIBUTION OF QUASI-LONGITUDINAL WAVE VELOCITY 

To investigate the effect of degradation of material properties on the probabilistic 

distribution function for the wave velocity pattern, quasi-longitudinal wave velocity profile 

was obtained from the pristine state specimens. Next, at the end of each fatigue interval, a 

probability density function that best explains the distribution of the wave velocities over 

the areas Area-A, Area-B, and Area-C, collectively, were calculated. It was found that the 

degradation of the mean stiffness, between the pristine state and the state, at the end of  
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110,000 cycles are not negligible, which is conventionally assumed unchanged, during 

the first 10% of the life of a composite. This affirms that the reduction of the quasi-

longitudinal wave velocities is random over the material surface. These reductions are 

distributed in nature. This signifies that the material properties started to compromise as 

early as 10% of the fatigue life of the composite specimens when the QUIC was able to 

indicate the initiation of precursor state.  

3.5 RESULTS AND DISCUSSION 

With the studies discussed above, it was confirmed that it is possible to detect and 

quantify the precursor damage state using the proposed technique. In the following 

subsections, findings from all the methods stated above are discussed. 

3.5.1 DAMAGE QUANTIFICATION USING QUANTITATIVE ULTRASONIC IMAGE 

CORRELATION (QUIC) 

3.5.1.1 A Proof of Material Degradation 

        As described in Section 3.3 the probability distribution of quasi-longitudinal wave 

velocities was analyzed in specimen S-E at the pristine state and at the end of 110,000 

cycles (Figure 3.5), which is at the end of 10% of the life of the composite. To find, if the 

distributed damages are developed inside as well as on the surface of the specimens, QUIC 

was performed on 125 × 125 pixels. Probability density function that best explains the 

distribution of the wave velocity over the areas Area-A, Area-B and Area-C were 

calculated by using MATLAB Statistical toolbox (R13, MathWorks, Natick, MA, USA). 

It was observed that the distribution of the quasi-longitudinal wave velocity was 

significantly altered. 
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The mean velocity and the standard deviation of the wave velocity profile changed due to 

the distributed precursor damage inside the specimen. The standard deviation of the quasi-

longitudinal wave velocity distribution was decreased from the pristine state to the end of 

110,000 cycles, indicative of a reduction of the broader distribution of the local material 

properties in the specimen. It is argued here that the wave velocity has decreased due to 

the reconfiguration of the material points, i.e., reconfiguration of local stiffness and/or 

density. When the material is in the pristine state, there were several manufacturing defects,  

 

Figure 3.5 Probability density distribution of wave velocities. (a) Pristine state; (b) 110,000 
cycles. 

and the material had local stress concentrations which were relaxed due to the initial set of 

fatigue loading. Overall the material state was going towards a converged state, but only 

by compromising the material properties. However, on the contrary, according to the  
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definition of the entropy from statistical mechanics, it is the sum of all the possible ways a 

system can be taken back from its current state to the original state, which always increases. 

By that definition, each material point in the specimen has actually diverged, from its 

original pristine state to the current state, with inevitable increase in the entropy of the 

system. This is indeed a challenging new argument to perceive, however, true, further 

which is under study to be conclusively verified. 

3.5.1.2 Damage Quantification Using Nonlocal-Continuum Mechanics 

As described in Section 3.3.2, in three composite specimens S-E, S-F, and S-G, the 

damage development stages were studied using the QUIC. Quasi-longitudinal wave 

velocity along the thickness directions at each pixel was calculated covering the scanning 

areas, Area-A, Area-B, and Area-C, respectively. Each scanning area was discretized into 

125 × 125-pixel points, and wave velocity was calculated at each pixel point. At the pristine 

state, the average quasi-longitudinal wave velocity obtained from the specimens S-E, S-F, 

and S-G were ~5057 m/s, ~5171 m/s, and ~4959 m/s, respectively. However, the quasi-

longitudinal wave velocity calculated after 300,000 cycles were ~4950 m/s, ~4754 m/s, ~4796 

m/s, respectively. Precursor damage state in the specimens was quantified by plotting the 

cumulative Nonlocal Damage Entropy (NLDE) described in Section 3.4.1 (Figure 3.3 

&3.4). Although the increasing trend of the NLDE growth pattern is promising, it is 

relevant to focus on the incremental changes in the NLDE (bar charts in Figure 3.6) which 

were observed consistently in all three specimens near similar fatigue intervals. In fact, the 

sudden jumps (explained in Section 3.5.2) in NLDE and CDI were evident after ~70,000, 

~110,000 and ~240,000 cycles. These are the states when material switched its state from 

one form of damage to the others. As per the Section 3.5.1.1 at the end of 110,000 cycles, 
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i.e., after ~10% of the specimen life, material properties degraded and at the end of 240,000 

cycles, i.e., after ~25% of the specimen life, micro-cracks were evident. 

 

Figure 3.6 The data shows the cumulative growth of damage entropy quantified by QUIC. 
Sudden change is gradient in the NLDE are the indication of precursor damage event which 
tends to get distributed until the next event occurs. 

3.5.2 BENCHMARK DAMAGE QUANTIFICATION FROM STIFFNESS DEGRADATION 

As described in Section 3.4.2 the continuum damage index (CDI) from the degradation 

of the material properties, the equivalence of material stiffness in terms of the quasi-

longitudinal wave velocity was calculated at each pixel on the specimen. As QUIC was 

employed with high-frequency ultrasonic testing, it is expected that the CDI be 

qualitatively consistent with the NLDE for indicating the precursor damage in the 

specimens. In Figure 3.6, both the CDI and the NLDE for the specimens S-E, S-F and S-G 

are plotted to facilitate the discussion on identifying the precursor damage state that 

initiated in the specimens. In Figure 3.6a–c it was observed that the CDI indicated  
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cumulative damage growth with fatigue cycles, the precursor events were identified in very 

close proximity to the similar fatigue intervals indicated by the NLDE independently, which 

were between ~50,000 to ~80,000 cycles, ~110,000 to ~175,000 cycles and ~225,000 cycles 

to ~280,000 cycles, inclusive all methods and all specimens. It is concluded that the 

material type tested initiated the precursor damage within ~30% of its lifespan.  

In this section further it is recommended, what percentage of material properties 

should be degraded during the progressive failure model tested under fatigue. It is proposed 

to mark a threshold value (dotted red line in Figure 3.6) of the NLDE based on the Student 

t-distribution analysis and identify the outlier, which is defined as the jumps in the NLDE 

and the CDI plots. Next, the value of the outlier NLDE occurred at the end of the respective 

fatigue interval should be used to compromise the material properties. For example, as per 

Figure 3.6b, in specimen S-F, it is recommended to compromise the material properties by 

3.5% at the end of 200,000 cycles. The new constitutive material property tensor can be 

written as, 

൫𝐶௜௝௞௟൯
ଶ଴଴,଴଴଴

= ൫𝐶௜௝௞௟൯
଴

− ቂ൫𝐶௜௝௞௟൯
଴

∗ (𝑁𝐿𝐷𝐸)ଶ଴଴,଴଴଴/100ቃ (3.1) 

3.5.3 BENCHMARK DAMAGE CHARACTERIZATION USING MICRO-OPTICAL MICROSCOPY 

        Optical microscopy imaging was performed on the composite specimens to examine 

the precursor damage. In the pristine state manufacturing defects were present in the 

specimens in the form of local voids with size ~6 ± 1 µm. However, it is evident from         

the microscopy images that the density of the microstructural damages increased due to the 

fatigue loading. Matrix cracking, fiber breakage, and localized inter-laminar delamination 

are observed at the end of ~160,000 and ~300,000 cycles. The average size 
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Figure 3.7 (a) Optical microscopy images of the decommissioned specimen S-A at the end 
of 300,000 cycles; (b) Scanning Electron Microscopy (SEM) images from the 
decommissioned specimen S-A after 300, 000 cycles of fatigue loading. 

of the matrix-cracks was observed close to ~224 μm. Large-scale damages such as edge 

delamination were not observed in the specimens. To investigate the development of the 

precursor damages across the width, at the end of 300,000 cycles specimen  

S-A was decommissioned and was cut at three locations (Figure 3.7), carefully using 

waterjet machine. Face A, B, and C, were then ground up to 3 mm by using P1200 

sandpaper. Afterwards, all faces were polished with P2400 sandpaper to get a smooth 

surface. Pre-delamination, fiber separation, and fiber debond, voids from the fiber slippage 

and interlaminar delamination crack joining two adjacent matrix cracks [1] are evident in 

the specimen S-A (Figure 3.7). 
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3.6  DAMAGE CHARACTERIZATION USING SCANNING ELECTRON 
MICROSCOPY (SEM) 

Face A, C and E were further investigated using SEM VEGA3 (TESCAN, Brno-

Kohoutovice, Czech Republic), and a summary of the findings is presented in Figure 3.7. 

Working distance in SEM was 7.22 mm and the accelerating voltage was 10 kV. Multiple 

sites of void initiation, the existence of large voids, fiber breakage, were identified and they 

confirm the findings from the benchmark studies.  

Figure 3.8 Scanning Acoustic Microscopy (SAM) images from the decommissioned 
specimen S-A after 300,000 cycles of fatigue loading. 

3.7 DAMAGE CHARACTERIZATION USING SCANNING ACOUSTIC 
MICROSCOPY (SAM) 

         SAM was performed on the specimen to investigate the damage developments on the 

surface as well as inside the specimens which were not accessible by the micro-optical 

microscopy. SAM C-scans were performed using high resolution ~100 MHz ultrasonic 

transducer at three defocused distances (Figure 3.8) at three locations, Face A, C and E. 
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Matrix cracking was clearly visible on the surface of the specimens. A couple of 

delamination sites were also observed. Additionally, from the grayed zone with lower wave 

amplitude, degraded materials properties were observed beneath the pre-delamination site. 

Multiple immature interlaminar delamination tracks were observed joining two matrix 

cracks or matrix fiber disbond tracks. 

3.8 CONCLUSIONS 

The objective of this chapter is to aid the progressive failure model with a quantified 

physics-based parameter to predictively degrade the material properties of the composites 

under fatigue. Hence, a hybrid nonlocal mechanics based offline ultrasonic NDE method 

is devised to quantify the material degradation. In this work, four woven fiber composite 

specimens were tested under high cycle low load fatigue loading to develop the progressive 

damage inside the specimen within their 30% of life calculated to be more than 300,000 

cycles. The QUIC was used to measure the wave velocities on the gage sections of the 

specimen to transform the information to a nonlocal parameter calculated from the 

dispersion curve obtained from the nonlocal Christoffel equation. Damage growth was 

quantified by nonlocal damage entropy (NLDE). Continuum damage index (CDI) across 

the thickness of the specimen was also quantified by the stiffness-degradation method. 

Cumulative damage growth was plotted with the number of fatigue cycles. The probability 

distribution of the degraded wave velocity over the specimen was plotted at the pristine 

state and at the end of ~110,000 cycles. This unique and consistent phenomenon will help 

devise new damage detection algorithm for online precursor damage detection and 

quantification. Further using the outlier NLDE parameter, the recommendation is given, how 



www.manaraa.com

87 

to sacrifice the material property tensor during the virtual fatigue testing in the simulation 

environment. 
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CHAPTER 4 

CHARACTERIZATION OF STRESS-RELAXATION IN FATIGUE 
INDUCED WOVEN-COMPOSITE BY GUIDED CODA WAVE 

INTERFEROMETRY(CWI) 
 

It has been observed that the material state of the composite structures changes due to 

the application of various external static stimuli (i.e., tension, compression or thermo-

mechanical), however, when the external stimuli are removed, the material follow a slow 

recovery during relaxation and returned to an equilibrium condition [115]. This 

phenomenon is mainly attributed to the reduction of the internal stresses due to the 

viscoelastic nature of the polymer matrix [95, 116-118].  

It is observed in the damage growth curve in the Figure 4.1 (From Chapter-2) that the 

slope of the PDI curve between two consecutive fatigue intervals could decrease and/or 

increase with the loading cycles. While analyzing the PDI peak designated as (b) in Figure 

4.1a, it is found that the slope of the curve between P1 and P2 is positive, and slope between 

P2 and P3 is negative. We hypothesized that the reduction and increase of the PDI is mainly 

contributed by the stress-relaxation and damage accumulation in the composite, 

respectively. To prove the hypothesis, CWI analysis of the Lamb wave was extended for 

stress-relaxation quantification in composite materials. Nonlinear ultrasonic of Lamb wave 

was also employed in the next chapter (Chapter-5) to verify results obtained from the CWI 

analysis.  



www.manaraa.com

89 

In this chapter, an attempt has been made to characterize the relaxation behavior of the 

fatigue induced damage woven composite structures through cross-correlation of the coda 

wave. Variation of cumulative stretch parameter due to stress-relaxation phenomena is 

reported.  Damage in the specimens were developed under tensile-tensile fatigue loading.  

The damage level inside the specimens were varied by changing the fatigue-cycles and 

loading frequencies. The correlation between the stress-relaxation phenomenon and the 

cumulative stretch parameter was observed.  

 

Figure 4.1. Precursor Damage Index (PDI) and stretch parameter plots for specimen (S-A). 

4.1   MATERIALS AND METHODS 
 
4.1.1 SPECIMENS PREPARATION 

The carbon-fiber composite plate used in this study had four woven layers. Material 

architecture and layers of a 3-D woven composite plate are shown in the Figure 4.2(a) and 

Figure 4.2(c).   Specimens were prepared according to ASTM D 3039 (~250 mm, ~25 mm, 
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and ~1.5 mm). A total of nine specimens were prepared (Figure 4.4(a)). Specimens 

NL02SP1, NL02SP2 and NL02SP3 were tested under 2Hz, NL05SP1, NL05SP2 and 

NL05SP3 were tested under 5Hz, NL10SP1, NL10SP2 and NL10SP3 were tested under 

10Hz loading frequency, respectively. Two piezoelectric wafers or PZT were attached to 

the specimens with Epoxy 9340 adhesive and were cured in room temperature for 72 hours 

to achieve sufficient bonding strength. Adhesive thickness was kept approximately ~120 

µm in all the specimens to reduce the thickness effect on the sensor signals.  

 

Figure 4.2 (a) Material architecture of a 3-D woven composite plate, (b) Stress-strain plot 
of the material, (c) Cross sectional view and damage state of the specimen at pristine state, 
(d) Failure image of the specimen at ultimate load.  
 

Average capacitance of the PZTs was measured to be 1.2 nF.  Tensile strength ( ult

) of the composite was estimated before the fatigue loading by conducting tensile testing 



www.manaraa.com

91 

on three specimens. A Typical stress-strain curve for a specimen are shown in Figure 

4.2(b).  Average ult  was estimated ~995 MPa.  

4.1.2 TENSILE-TENSILE FATIGUE TESTING AND RELAXATION EXPERIMENTS  

Specimens were subjected to tensile-tensile fatigue loading to generate distributed 

damages and localized stresses in the material.  

 

Figure 4.3 (a) Tone-burst signal used in the experiments, (b) Fast Fourier Transform of the 
tone-burst. 

 

 

Figure 4.4 (a) Sample woven carbon fiber composite specimens with piezoelectric sensors 
used for fatigue testing and relaxation experiments, (b) Pitch-catch experimental set-up, (c) 
Experimental schedule of each specimens.  
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Three different fatigue loading frequencies were chosen to explore its influence on 

the stress-relaxation if any, which is currently not known. Fatigue parameters are selected 

as follows: loading ratio, min max/ 0.01R    , and max 0.6 ult  . The experimental 

process followed is shown in the Figure 4.4(c).  Specimens were subjected to tensile-tensile 

fatigue loading by Material Testing System (MTS 820). Ultrasonic Lamb wave-based 

pitch-catch experiments were conducted at every 15 minutes interval during the 8-hrs 

relaxation period to investigate the stress-relaxation in the specimens. Pitch-catch 

experiments were performed by keeping the specimens at zero load with free-free boundary 

conditions as shown in the Figure 4.4(b). The capacitance of the PZTs were checked 

throughout the experiment to confirm that the sensors were not damaged during fatigue 

loading. A standard 5-count tone-burst signal with a central frequency of 330 kHz with 

20V peak-to-peak as shown in the Figure 4.3(a) was used to excite the actuator for the 

generation of Lamb wave propagation, which was previously found using a tuning 

experiment. Sensor signals were collected averaging 500 signals to improve the signal-to-

noise ratio.  

4.1.3 DATA INTERPRETATION  

        Signal collected at 0-hr and 8-hrs during relaxation experiment for specimen 

NL05SP1 are shown in the Figure 4.5 (a). It is observed from the figure that first part of 

the signal is unaltered whereas the coda part (late wave trains) of the signal affected and 

phase shift is observed. A time window between time-step 60µS and 200µS that covers 

entire tail part of the signal was used to perform cross-correlation analysis. Incremental 

stretch parameter (α), which measure relative wave velocity change of the coda wave 
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between two signals collected at two relaxation time states (r -1 and r) is calculated by 

the equations below,  

 

Figure 4.5 (a) Comparison between two sensor signals obtained at 150k-0Hrs and 150k-
8Hrs for specimen NL05SP1, (b) First arrival, (c) Coda wave. 
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Where a range of α was selected [−value ≤ k ≤ value] to perform cross-correlation 

 
                          max( ( ))r r kCrCr    where r=1: n, n is the number of sensor signals 

collected during 8-hrs of relaxation experiments. Relaxation in composite can be 

quantified by the expression below, 

                                                 
1

( )
n

r
r

n 


                                                          (4.2) 

4.2 RESULTS AND DISCUSSION 

        To investigate how   changes during relaxation, the average   was obtained from 

identical specimens fatigued with loading frequencies (2Hz, 5Hz, and 10Hz) are plotted 

with relaxation time, as shown in the Figure 4.6(a), Figure 4.6(b), and Figure 4.6(c), 
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respectively. It is observed from the figure that the   grows with relaxation time. The 

value of   at ¼-hr and 8-hrs are plotted at 75k, 150k and 225k fatigue cycles for 2Hz, 

5Hz, and 10Hz loading frequency, respectively, as shown in the Figure 4.6 (d), Figure 4.6 

(e), and Figure 4.6 (f).  From the figure, it is observed that the   is influenced by number  

Figure 4.6 Stress-relaxation ( ( )n ) in the composites, (a) 2Hz, (b) 5Hz, (c) 10Hz, ( )n  
at (a) ¼-hr and 8-hrs for 2Hz, (b) ¼-hr and 8-hrs for 5Hz, (c) ¼-hr and 8-hrs for 10Hz.  

       fatigue cycles the specimens undergone before relaxation.   grows with number of 

fatigue cycle. In Figure 4.6(a), Figure 4.6(b), and Figure 4.6(c), it is observed that the 

specimens with 5Hz loading frequency shows higher relaxation compared to 2 Hz and 10 

Hz loading frequency, which is due to the fact that 5Hz develops more damage compared  
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Figure 4.7 Comparison between two sensor signals obtained at 0-Hrs and 8-Hrs after 
each fatigue loading interval for specimen NL05SP1, (a) 75k fatigue loading, (b) 150k 
fatigue loading, (c) 225k fatigue loading, Zoomed in view of the coda wave for (d) 75k 
fatigue loading, (e) 150k fatigue loading, (f) 225k fatigue loading.  

to 2 Hz and 10 Hz. Rate and degree relaxation in composite material depends on the 

depends amount of accumulated damage inside the material [115]. To confirm amount of 

damage accumulation in the material due to different loading frequencies, nonlinear 

ultrasonic technique based on the Lamb wave propagation was employed, which is 

discussed in the subsequent chapter (Chapter-5).  To investigate how the number fatigue 

cycles, influence the relaxation of the material, sensor signals for specimen NL05SP1 

(collected at 0-hrs., ¼ -hrs., and 8-hrs.) are compared at 75k, 150k and 225k fatigue cycles, 

respectively as shown in Figure 4.7(a), Figure 4.7(b), and Figure 4.7(c). A window of 5 S

length was selected on the coda wave and zoomed in view of the windowed signals were 

shown in Figure 4.7(a), Figure 4.7(b), and Figure 4.7(c), respectively. It is seen from the 

figure that the phase shift between 0-hr and 8-hrs increases with fatigue cycles.  Also, due 



www.manaraa.com

96 

to relaxation, the sensor signals (¼ -hrs. and 8-hrs.) shifted towards left from the 0-hr sensor 

signal.  

        To investigate influence of amount damage accumulation in the material on the sensor 

signal, two sensor signals collected at 150k-0hr and 225k-0hr are compared as shown in 

the Figure 4.8(a).  A time window on coda wave was selected as shown in the figure and 

zoomed in view of the signal is depicted in the Figure 4.8(b). An opposite phenomenon, 

where the sensor signal collected at 225k-0hr shifted toward the right from the 150k-0hr is 

observed. This is due to the fact that damage accumulation leads to deceases the coda wave 

velocity. 

Figure 4.8 (a) Comparison between two sensor signals obtained at 150k-0Hr and 225k-
8Hr after each fatigue loading interval for the specimen NL05SP1, (b) Zoomed in view 
of the coda wave.  

4.3 CONCLUSIONS 

        In conclusion, stress-relaxation in the composite increases coda wave velocity, 

damage accumulation decreases coda wave velocity. Incremental stretch parameter is 

found to be very sensitive to the stress-relaxation in the composites.  Monotonic increase 

of the stretch parameter is observed due to relaxation. This technique has potential to be 

used for monitoring of stress-relaxation behavior in composite materials.
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CHAPTER 5 

CHARACTERIZATION OF STRESS-RELAXATION IN FATIGUE 
INDUCED WOVEN-COMPOSITE BY GUIDED WAVE-BASED 

ACOUSTIC NON-LINEARITY TECHNIQUE 
 

       Although the linear Lamb waves [119] were proposed to investigate the material state 

awareness [37, 59] of the composite structures, the applications are limited to the inspection 

of discrete damage like, delamination and open cracks. To overcome the limitations 

nonlinear ultrasonic methods are proposed [120-122]. Considering the multi-advantages of 

the guided waves over the bulk waves, nonlinear ultrasonic Lamb waves have received 

great attention in the recent years for material state awareness and structural health 

monitoring (SHM) [123-129].  

       Existing literature are mainly focused on the physics of nonlinear interaction of Lamb 

waves with isotropic metallic structures. Limited resources are available on the physics of 

nonlinear interaction of Lamb waves with anisotropic composite materials. Material 

degradation in composite laminates due to thermal fatigue was investigated by Li et al. 

[130]. Acoustic nonlinearity of the sensor signals obtained from experiments were shown 

to be sensitive to the thermal fatigue cycles. Additionally, sensitivity of acoustic 

nonlinearity of the ultrasonic waves was found to be more promising in detecting micro-

damages than the linear parameters (i.e., group velocity, attenuation coefficient).  
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        The development of nonlinear higher harmonics is one of the important features of 

nonlinearity in Lamb waves analysis, which allows to investigate the existence and the 

degree of micro-damages in structures [131]. Several researches in the recent review paper 

have reported that the material nonlinearity developed due to the micro-cracks was linked 

to the generation of higher harmonics in Lamb waves [132]. Higher harmonics generation  

depends on the interaction of input excitation signal with  hysteretic nonlinearity and  

contact acoustic nonlinearity [131]. The Lamb waves’ second-harmonic generated from a 

high amplitude input tone-burst excitation signal was used to detect and characterize the 

fatigue damages in metallic structures [125, 132, 133].  Deng and Pei [125] utilized the 

nonlinear effect of Lamb waves and quantified the fatigue induced damages in the 

Aluminum plates. A new term, “stress wave factor” was introduced to quantify the 

damages associated with the number of fatigue cycles. Pruell et al. [126] investigated the 

correlation of higher harmonic generation and level of plasticity in Al-1100-H14 plate. 

Extensive studies were conducted on the second harmonic generation due to the interaction 

of Lamb wave modes with contact type nonlinearity. Yi Yang et al. [134] conducted 

experimental and numerical studies on the second harmonic generation due to the 

interactions of low-frequency Lamb waves with fatigue cracks. They reported that the 

magnitude of the second harmonic induced by the interaction of the fundamental 

symmetric mode (S0) of Lamb waves with the fatigue crack is much higher than that by the 

fundamental anti-symmetric mode (A0) of Lamb waves. Shen and Giurgiutiu [131] 

conducted numerical and analytical modelling of the interactions of the Lamb waves with 

a breathing crack. They showed that acoustic-nonlinearity grows with breathing crack 

length.  Most recently, Mandal and Banerjee [135]  also employed nonlinear Lamb waves 
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to detect a breathing type disbond in a stiffened metallic panel. However, a comprehensive 

investigation of micro-cracks developments and subsequent relaxation to realize the 

material state awareness in composite structures utilizing non-linearity analysis in Lamb 

wave propagation is missing.  

        The main objective of the present work is to understand and report the variation of 

acoustic nonlinearity in composite structures encountered stress-relaxation phenomena. In 

this chapter, an attempt has been made to characterize the stress-relaxation behavior of the 

fatigue induced damage woven composite structures through acoustic nonlinearity of the 

Lamb wave. The correlation between the stress-relaxation phenomenon in the specimens 

and the acoustic nonlinearity is investigated. 

5.1. THEORETICAL DEVELOPMENT FOR NON-LINEAR LAMB WAVE 

5.1.1 ACOUSTIC NONLINEARITY QUANTIFICATION USING 2ND HARMONICS 

        Higher harmonic generation due to the material nonlinearity is a classical nonlinear 

phenomenon, where a sinusoidal signal after propagation of a certain distance in the 

medium and interaction with material non-linearity, generates higher harmonics 

components in addition to the original component [131].  

Constitutive equation for nonlinear materials in one-dimension (1-D) can be written as 

[132, 136],  

(1 .......)xx xx xx xxE                                                                                               (5.1) 

Where xx , xx , xxE , and   are stress in the x-direction, strain in the x-direction, 

Young’s modulus, and nonlinearity parameter, respectively.   

1-D wave equation in the x-direction can be written as, 
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Substituting the Eq. (5.1) in 1-D wave equation (Eq. (5.2)) we obtain [121], 
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 
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                                                                                    (5.3) 

Solution of displacement u  can be obtained by applying perturbation theory. u  is 

expressed as follows [121], 

1 2cos( ) cos 2( )u A kx t A kx t                                                                                 (5.4) 

Absolute second-order nonlinearity parameters can be expressed as [123, 124],  

2
2 2

1

8
. . ( )
A

f
k x A

                                                                                                        (5.5) 

where, 1A  and 2A  are the amplitude of the fundamental frequency and the second 

harmonic of the Lamb wave, respectively, x is the propagation distance, k  is the 

wavenumber, and ( )f   is a frequency function of the nonlinear parameter. Normalized 

second harmonic amplitude, which is proportional to the absolute second-order 

nonlinearity,  , written as [130],   

2
2

1

A
x

A
                                                                                                              (5.6) 

5.1.2 CUMULATIVE 2ND HARMONIC GENERATION 

To estimate material nonlinearity, first, it is essential to ensure that nonlinear 

parameter   grows with the wave propagation distance, which is called as cumulative 

phenomena [130, 136]. “Phase velocity matching” condition for the S1-S2 wave modes is 

performed to ensure a cumulative effect [125, 132, 137-139]; however, in practice, phase 

matching of the S1-S2 modes is not always feasible, especially when material properties 
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change due to the accumulated fatigue damage [125]. Chillara and Lissenden [136] 

reviewed the second harmonic generation by satisfying the phase matching condition of 

different primary modes, i.e., S0-S0 and S1-S2 modes, and it was found that the amplitude 

of the second harmonic grows with the propagation distance for the S1-S2
  mode matching, 

while for the S0-S0 mode matching cumulative effect is prominent up to a certain 

propagation distance and then deceases afterward. Thus, there is a potential for an 

approximate phase matching of the S0-S0 mode at a low frequency guided Lamb waves to 

estimate the actual material nonlinearity, if the propagation distance of the Lamb wave is 

kept within a permissible distance. Recently Masurkar et al. [140] showed that approximate 

phase matching of the S0 mode at low frequency can be used to estimate material 

nonlinearity accurately. In this study, permissible distance is measured by demonstrating 

the cumulative effect of S0-S0 mode.   was measured at several different distances on a 

woven carbon composite plate used in this study, as shown in the Figure 5.1(b). It is  

          

Figure 5.1 (a) Woven carbon fiber composite plate used for experiments, (b) Variation of 
  with the propagation distance. 
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observed from the figure that   grows with the propagation distance up to 230cL mm  

and drops after that. In this work distance between actuator and sensor was kept as 90 mm 

to effectively exploit the cumulative effect as shown in the Figure 5.1(b).  The 

experimental process followed for relaxation experiments were discussed in Chapter-4.  

Before starting the experiments inherent nonlinearity parameter from all pristine specimens 

were calculated by measuring  . The average value of   was calculated ~0. 0014.                                                        

5.2 RESULTS AND DISCUSSION 

        Sensor signals from the specimens during relaxation experiments were recorded at the 

interval of 15 minutes for a duration of 8-hrs. To investigate the development of damages 

(mainly in the form of micro-cracks) through acoustic-nonlinearity, frequency responses 

of the normalized time-domain signals collected after 75,000, 150,000, and 225,000 cycles 

from specimen NL05SP1 tested with 5Hz fatigue frequency are plotted in 2-D as shown in 

the Figure 5.2 (a). X-axis, Y-axis represent the number of fatigue cycles and frequency, 

respectively.  Central frequency (
1 ( )cA A f )  and the 2nd harmonic ( 2 (2 )cA A f ) were 

clearly shown. Slices of the Figure 5.2(a), at 75,000, 150,000 and 225,000 cycles were 

shown in the Figure 5.2(c).  Zoomed in view of the 2nd harmonic from Figure 5.2(a) and 

Figure 5.2(c) were shown in Figure 5.2(b) and Figure 5.2(d), respectively.  It is seen from 

the Figure 5.2(b) and Figure 5.2(d) that the amplitude of the second harmonic increases 

with the number of fatigue cycles, which confirms the increase of material nonlinearity due 

to fatigue damage accumulation. Figure 5.2(b) and Figure 5.2(d) both shows a frequency 

shift of the higher harmonics towards the lower frequency with the increased amplitude, 

which confirms the damage accumulation in the specimens, based on the current 

knowledge.  
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        To investigate how acoustic nonlinearity changes during relaxation time, frequency 

responses of the normalized time-domain signals collected during relaxation after 225,000 

cycles fatigue loading from specimen NL05SP1 were plotted with relaxation time as shown 

in the Figure 5.3(a). Central frequency and the 2nd harmonic were marked in the figure.  

Cuts at 0-hrs. and 8-hrs. from the Figure 5.3(a) are represent as 225k-unrelaxed and 225k-

relaxed(8-hrs.) state, respectively, as shown in the Figure 5.3(c). Enlarged view of the 2nd 

Harmonic from the Figure 5.3(c) is shown in the Figure 5.3(d).       

 

Figure 5.2 (a) FFT of the sensor signals (collected at pristine, 75,000, 150,000, and 225,000 
cycles at zero hours) vs fatigue cycles from unrelaxed sample, (b) A zoomed view of the 
second harmonics of the sensor signals (collected at pristine, 75,000, 150,000, and 225,000 
cycles) vs fatigue cycles from unrelaxed specimen, (c) FFT of the sensor signals collected 
at pristine, 75,000, 150,000, and 225,000  from unrelaxed specimen, d) A zoomed view of 
the second harmonics in the sensor signals collected at pristine, 75,000, 150,000, and 
225,000  from unrelaxed specimen.  
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Figure 5.3(b) represents zoomed in view of the 2nd harmonic ( 2A ).  It is observed from the 

Figure 5.3(b) and Figure 5.3(d), that the amplitude of the second harmonic decreases due 

to the relaxation. This is realized due to the decrease in the nonlinearity in the composite 

specimen due to the internal stress-relaxation. In the Figure 5.3(b) and Figure 5.3(d), an 

opposite phenomenon which was noticed due to stress-relaxation where the higher 

harmonics were shifted back towards higher frequency with decreased amplitude. Here, a 

measurement of the amplitude of the second harmonic was performed by selecting the 

maximum value from the window between two frequencies and as shown in Figure 5.3(d).   

 

Figure 5.3 (a) FFT of the sensor signals (collected during relaxation after 225,000 cycles 
fatigue loading) vs. relaxation, (b) A zoomed view of the second harmonics, (c) FFT of the 
sensor signals collected at 225,000 cycles from unrelaxed and relaxed state of the 
specimen, d) A zoomed view of the second harmonics in the sensor signals collected at 
225,000 cycles from unrelaxed and relaxed state of the specimens.  
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        To explore the influence of the fatigue damage accumulation and stress-relaxation on 

relative parameter  , the average   was obtained from identical specimens fatigued with 

loading frequency 2Hz, 5Hz, and 10Hz. Ultrasonic Lamb wave signals were acquired at 

the unrelaxed and after every 15 minutes during the 8-hours of relaxed state. Concurrently, 

parameter   was also calculated, illustrated in the Figure 5.4(a), Figure 5.4(b), and Figure 

5.4(c), respectively. It is observed that, as the fatigue cycle increases, the value of the    

also increases significantly. This increase is however dependent on the frequency of the 

loading. Specimens with 5Hz loading frequency tend to realize higher compared to 2 Hz 

and 10 Hz loading frequency. It was mentioned in Ref [141, 142], that an optimum loading 

frequency tends cause more distributed defects in composite than higher frequency with 

same number loading cycle. Similarly, it is shown in Ref [141, 142] that frequency of 

loading has a nonlinear effect on the fatigue life of the composite. Similar evidence was 

observed in the nonlinear parameter    in our study. It is realized that increased 

nonlinearity is mainly contributed by the developments of the micro-damages in the form 

of matrix micro-cracks, fiber breakage, local delimitations, and local plastic strain, etc. 

Higher (Figure 5.4(b)) may justify higher degree of distributed micro damages in 

composites loaded with 5 Hz compared to 2 Hz and 10 Hz loading frequency. It is noted 

that at 5 Hz, the rate of decrease and reduction of normalized amplitude of the   parameter 

(Figure [5.4(e)) is also higher due to the stress relaxation, simultaneously. This may 

indicate that the lower frequency has higher degree of stress relaxation while incurrign 

higer degree of distributed damage. It is evident that there is a resonant loading frequency 

where composite incurs more precursor damage than other lower or higher frequency of 
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loading. The calculated decrease in the percentage of an averaged nonlinearity due to the 

stress relaxation is presented in Table 5.1. 

Table 5.1: Reduced   (% and [norm. magnitude])) due to Stress Relaxation 

 

 

Figure 5.4  Comparison of acoustic nonlinearity,  , obtained from second harmonics of 
the sensor signals at un-relaxed (0-hrs)and 8-hrs-relaxed state after each loading cycles 
interval, (a) 2Hz-second harmonic, (b) 5Hz-second harmonic, (c) 10Hz-second 
harmonic, Change of normalized   with relaxation time after each fatigue loading 
sequence, d) 2Hz-second harmonic, (e) 5Hz-second harmonic, (f) 10Hz-second 
harmonic.  



www.manaraa.com

107 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Figure 5.5 Remaining ultimate strength of the materials at pristine state and after the 
fatigue-relaxation experiments. 
 
      To validate the above explanations, the remaining strength of the specimens were 

tested. Figure 5.5 shows that the ultimate strength of the specimens subjected to 5 Hz 

fatigue loading is much lower (889 MPa) than the specimens subjected 2 Hz and 10 Hz 

loading frequency, resulted 950 MPa and 939 MPa, respectively. 

 

Figure 5.6 Optical Microscopy images of the specimens after 225,000 fatigue cycles, (a) 
Specimen NL02SP1, (b) Specimen NL05SP1, (c) Specimen NL10SP1. 
 

      To investigate amount of damage development during fatigue loading, optical 

microscopy images were taken for specimens NL02SP1, NL05SP1 and NL10SP1, 

respectively, after 225,000 cycles fatigue loading. Images were taken across the cross-

section of the specimens as shown in the Figure 5.6(a), Figure 5.6(b) and Figure 5.6(c), 
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respectively. Different types of damages in the form of matrix micro-cracking, fiber 

breakage and edge-delamination were observed. Concentration of damages were 

significant for the NL05SP1, which also validates our findings in Figure 5.5.     

5.3 CONCLUSIONS 

        In conclusion, fatigue damage accumulation in composites increases material 

nonlinearity, while the stress-relaxation decreases material nonlinearity, which can be 

quantified using guided Lamb wave modes. The second harmonic of the Lamb wave is 

sensitive to the stress-relaxation. The approximate phase-matching of the wave mode pair 

(S0-S0) at low frequency is also found to be efficient at detecting the stress-relaxation 

phenomena in the composite. A nonlinear Lamb wave technique, based on higher harmonic 

generation, can be employed as a promising tool for quantification of stress-relaxation in 

composites.  
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CHAPTER 6 

PERI-ELASTODYANMIC SIMULATIONS OF GUIDED ULTRASONIC 
WAVE IN PLATE WITH SURFACE MOUNTED PZT 

 

        In Structural Health Monitoring (SHM) research, Lamb waves are widely used for 

damage detection in the metallic plate-like structures [37, 98]. High-frequency ultrasonic 

actuators and sensors are strategically mounted on the plate-like structure to detect, localize 

and characterize the damages [15]. Symmetric (S0) and Antisymmetric (A0) Rayleigh-

Lamb wave modes while travel through the plate, interacts with the boundaries and the 

discontinuities [143] and are subjected to mode conversion. Efficient diagnostic and 

prognostic algorithms are then employed to estimate the severity of the damage and the 

damage growth. 

        Sensor signals play a critical role in quantifying the extent of damage within the 

structure. In most practical cases with SHM, the damage state of the material is unknown, 

and the sensor signals are the observables. There could be infinite possibilities of damage 

states in the material and it is impossible to experimentally obtain the understanding of the 

sensor signals due to the varying damage states. Hence, for SHM, an offline simulation 

tool will add tremendous value [18] to the understanding of the physics of the wave 

propagation and its interaction with the damages. Unlike experiments, in simulations, 

various host structure geometries and different damage scenarios could be analyzed more 

inexpensively. Thus recently, Computational NDE and SHM [19, 144-147] have gained 
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enormous popularity. Existing analytical approaches are insufficient to simulate the wave 

propagation in three-dimensional structures with complex geometries and boundary 

conditions. Thus, a number of numerical techniques such as spectral finite element method 

(SEM) [148-150], finite element method (FEM) [64], boundary element method (BEM) 

[151], mass-spring lattice model (MSLM) [152], finite difference method (FDM) [153], 

finite strip method [150, 154], cellular automata [155, 156], Elastodynamic finite 

integration technique (EFIT) [157] were developed. While these techniques can predict the 

sensor signals with a considerable accuracy, fine discretization in spatial and time domains 

makes them computationally expensive. To overcome this issue, a few semi-analytical 

techniques, such as distributed point source method (DPSM) [158], local interaction 

simulation approach (LISA) [19, 159, 160] and semi-analytical finite element (SAFE) 

[161] methods were developed to reduce computational burden. DPSM is a meshless semi-

analytical method which requires displacement and stress Green’s functions in the problem 

formulation. It was found that the frequency domain DPSM is a much faster method than 

the FEM, BEM, SEM, etc. Moreover, DPSM is more accurate than the FEM, while it 

avoids the inherent issue with the spurious reflection [158]. Among the time domain 

approaches, LISA is similar to the EFIT method, requires additional local interaction of 

material points in time and space domain. This makes them computationally expensive. A 

parallel computing facility would be necessary for a problem similar to the one presented 

in this chapter. Additional advantages and disadvantages of these techniques can be found 

in Ref. [162]. In this chapter, a newly formulated technique, Peri-elastodynamics is 

proposed as an alternative approach to simulate the wave propagation in three dimension 

(3D). The objective of this chapter is to present the Peri-elastodynamic formulation for the 
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3D ultrasonic wave simulation and demonstrate that the guided ultrasonic waves can be 

accurately simulated using peridynamic theory. 

        The reason for proposing a new method herein, is that by changing the boundary 

conditions virtual wave propagation can be studied while the material is still under 

operation or loading. Complementary to the existing methods like DPSM, EFIT, LISA, 

SEM, Peri-elastodynamics can be used to predict both the damage growth as well as the 

wave propagation signals, simultaneously. In Peri-elastodynamic, damage detection and 

characterization can be performed while the damage is still growing, without altering any 

meshing or discretization keeping the same parent model. This would not only be 

impossible using Finite Element Method (FEM) but would be equally impossible by the 

newer models like DPSM, EFIT, LISA, SEM. Hence, Peri-elastodynamic would be 

advantageous over the existing wave simulation tools. Using the proposed Peri-

elastodynamic simulation, when the damage grows under operation, only the damage 

matrix can be modified. Damage propagation in metallic and composite structures [55, 89] 

were successfully presented by the earlier researchers using peridynamics. Similarly, two 

dimensional (2D) in plane wave propagation were also simulated [154-156, 163] using 

peridynamic theory. However, no work has been reported so far to simulate the 3D Lamb 

wave modes in a plate-like structure that could be used for simulating virtual NDE and 

SHM experiments. 

        Peridynamic theory (PD) was developed by Silling et al. [55]. In the fundamental 

equation of motion of a body, the peridynamic formulation employs the integral of the 

force density instead of the divergence of the stress tensor. The integral approach makes it 

suitable to simulate the damage propagation problem [93] without altering the mesh. Ha 
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and Bobaru [164] studied dynamic crack propagation and crack branching in glass under 

dynamic loading. Madenci and Oterkus [45] employed PD theory to predict the crack 

propagation in a composite and metallic plate. However, only a few articles can be found 

on the application of PD to solve the wave propagation problems. Nishawala et al. [155] 

recently used bond-based peridynamic theory to simulate Rayleigh wave propagation in a 

2D isotropic (CR-39) plate. In this work, a ramp loading with a short time pulse was used 

to displace the material points located at one end of the plate to generate the surface 

skimming Rayleigh wave. Only recently, Hafezi et al. [148, 163, 165] employed PD theory 

to model the in plane longitudinal ultrasonic wave in an aluminum plate [154, 156]. In 

these works, the elastic wave propagation was simulated by considering only one layer of 

the material points without out of plane deformation. Hence, the method is inefficient and 

insufficient to simulate the Lamb wave modes. Additionally, comparing the peridynamic 

and continuum formulation of strain energy density, the mathematical equation for the 

bond constant used in these articles [148, 163, 165] were incorrect, but they are correctly 

presented in this chapter. Studies reported were neither validated with any analytical 

solution nor compared with any experimental results. In this work, it is argued with 

corrected bond constant that one layer of the material point is not only insufficient but also 

inaccurate to simulate the Lamb wave modes. Monolayer simulation cannot accommodate 

the out of plane deformation. Therefore, it is shown that with specific discretization 

schemes, at least three layers of spatial material points are required to correctly capture the 

fundamental Lamb wave modes (S0 and A0) in a plate.  
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6.1 PERI-ELASTODYNAMIC (PED) FORMULATION 

6.1.1 BASICS OF BOND-BASED PERIDYNAMIC FORMULATION 

        Peridynamic is a meshless simulation method where a material body is discretized 

into a series of material points. To illustrate the kinetics, an undeformed and a deformed 

state of two particles are shown in Figure 6.1a, b, respectively. The deformation between 

two material points produces a pairwise interaction along the bond (Figure 6.1b). The 

equation of equilibrium at the material point x  at time t can be written as follows [55], 

 where, u , ρ , b , f  and V  are the displacement, density, body force per unit volume at 

the material point, the pairwise force acting along the bond between x  and x  and the 

volume of the material point at x , respectively. The integral of the forces acting at the 

parent material point x  is performed over a finite region H , called Horizon in the 

peridynamic theory. The material points inside a Horizon are called the family members of 

the parent material point. The parent material point interacts with the other material points 

within its family while the interactions with the points outside the Horizon are negligible. 

Figure 6.1c, d represent a family of a material point in three-dimension and in two-

dimension, respectively.  

Relative distance and the displacement between the two material points in the 

reference configuration (Figure 6.1a) can be viz., 

 ξ = x x      (6.2) 

 η= u(x,t) u(x,t)  (6.3) 

    ρu(x, t) = f(u(x , t) u(x, t), x x)dV + b(x, t)
H

 (6.1) 
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Figure 6.1 Kinetics of peridynamics deformation [166, 167]: (a) Horizon, bond and family 
of a material point x in the reference configuration, (b) Deformed configuration, (c) 
Illustration of interactions of material points within a family in three-dimension, (d) 
Interactions of material points in two-dimension. 
 

Relative displacement between the two material points in the deformed configuration can 

be expressed as (Figure 6.1), 

  (ξ+η) =(u(x,t)+x) (u(x,t)+x) (6.4) 
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Constitutive law in the peridynamic approach is expressed as follows, 

ξ + η
f(η,ξ) = c(ξ)s

ξ + η
 (6.5) 

 

 where, c and s are the bond constant and the stretch of the bond, respectively. The bond 

constant for a two-dimensional material body is calculated by balancing the strain energy 

density from the continuum mechanics and peridynamic formulation viz. [45], 

c(ξ) = 9E (2πhδଷ)⁄  (6.6) 

 where E, h and δ  are the Young’s Modulus, the half thickness of the plate and the radius 

of the Horizon H, respectively. In peridynamics, the stretch is the ratio of the change in the 

length of the peridynamic bond due to the deformation of the initial bond length, expressed 

as follows, 

ξ + η ξ
s =

ξ
 (6.7) 

6.1.2 ACTUATOR MODELLING WITH IN PLANE EXCITATION 

        In SHM, PZT actuator is attached to the host structure as shown in Figure 6.2a. In this 

work, a 300 mm × 200 mm plate is used for the wave propagation simulation (Figure 6.2a). 

A plate with a hole is also considered to study the wave damage interactions (Figure 6.2b). 

Lamb waves are generated by applying a standard tone-burst voltage signal to the PZT 

actuator [15]. Except the interface between the PZT actuator and the plate, all other 

boundaries of the plate are considered stress-free in the simulation. The voltage signal 

actuates the PZT and transformed the energy into in plane mechanical strain. The in-plane 
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strain causes the rapid localized displacement in the host structure, which results in the 

Lamb wave propagation in the plate. The Lamb wave modes create out of plane 

displacements and hence, to accommodate such deformation three layers of material points 

are used in the modeling (Figure 6.2b). Figure6.2c shows the discretization used in this 

study which is further described in Section 6.1.4. Displacement in the structure varies 

linearly along the length of the PZT and attains a maximum value at the boundaries [168] 

as shown in Figure 6.2d. In this study, a square PZT with a dimension of 2.4 × 2.4 mm is 

modeled by applying a maximum of 1  μm  in plane radial displacement to the 

circumferential material points, shown in the Figure 6.2d. The displacements of the 

material points at the center of the PZT were enforced to zero. The equation for variation 

of displacement due to the application of a tone burst signal is expressed as, 

u(x, t) = U(x)eି୮୲మ/ଶsin (ωୡt) (6.8) 

 where, ωc  and U(x) are the central frequency and the maximum displacement amplitude 

of the excitation signal given to different material points, respectively. The parameter p  

in the Equation (32) is expressed as, 

p = (2khωୡ Nୡ⁄ )ଶ (6.9) 

 where, k , h and Nc  are the signal shape factor, the half thickness of the specimen and the 

number of cycles of the actuation signal, respectively. To select the desired excitation 

frequency, the tuning curves for S0 and A0 modes in the Aluminum 6061-T6 were obtained 

from an open source software “Waveform Revealer” [165], developed by the LAMSS 

laboratory at the University of South Carolina (USC). As shown in Figure 6.3 a,b, the 

central frequency of 150 kHz is chosen to make sure that only the S0 and A0 modes are 
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excited when the modal amplitudes are comparable but nonequal. In the present study, a 

3.5 count tone-burst signal with the central frequency ( cω ) of 150 kHz is used. Figure 

6.3c, d show the time domain signal and its frequency content, respectively. 

 

Figure 6.2 The schematics showing the geometry of an Aluminum 6061-T6 plate 
used in the simulation: (a) Pristine plate with PZT mounted on the top surface, (b) 
Discretization of the plate and material layers (top, middle and bottom surfaces, 
L1, L2 and L3, respectively), (c) Discretization of the plate for top surfaces, (d) 
Boundary condition: Particle displacement due to the PZT excitation. 
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6.1.3 NUMERICAL TIME INTEGRATION 

In Peri-elastodynamics approach, the plate is spatially discretized into a finite number 

of material points. Each material point has finite volume in the reference configuration.  

Figure 6.3 (a) Dispersion curves for 2 mm thick Aluminum 6061-T6 plate, (b) Tuning 
curve of an Aluminum 6061-T6 plate (2 mm thickness) with a standard 7 mm PZT, (c) 3.5 
count tone burst signal (displacement input signal) with 150 kHz central frequency shown 
in time domain, (d) Frequency domain representation of the excitation signal. 

Material volume for 3D uniform discretization grid is calculated as 
3dl , where dl  is 

the element length [45, 169]. By replacing the integration with a finite summation over all 
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the material points inside the Horizon, the equation of motion at material point i after the 

time step n can be expressed as,  

  n n n nρu = f(u u , x x )V + bi i i if f fN f
 

   (6.10) 

The net force (f) acting on a material point is calculated by summing the peridynamic forces 

on the parent material point due to all the neighboring points inside its Horizon. N f  

represents the number of material points within the Horizon enclosing the parent material 

point i. The Velocity-Verlet integration [31] scheme is employed in this study to calculate 

the displacements in the time domain for given boundary and initial conditions as follows, 

Δtn+1/2 n nv = v + fi i i2ρi
 

Δtn+1/2 n n+1/2u = u + vi i i2ρi
 

n+1
i

Δtn+1 n+1/2v = v + fi i 2ρi
 

(6.11) 

Stability of the numerical solution can be obtained for a small-time step Δ t  and a spatial 

discretization step ΔS . To have a convergence of the displacements, the detailed procedure 

to select the time step ( Δ t ) and spatial discretization ( ΔS ) is discussed in Section 6.1.4. 

6.1.4 PERI-ELASTODYNAMIC SPATIAL AND TEMPORAL DISCRETIZATION 

Proper spatial and temporal discretization are the critical parameters for the 

convergence of the solution in wave propagation simulation. Maximum spatial 

discretization ( ΔS ) must meet the criterion below [170], 
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cminλ =min f
; ΔS = λ / 10min  (6.12) 

 where, minλ  is the minimum wavelength of the Lamb wave modes and minc  is the minimum 

phase velocity of the simulated modes at the excitation frequency f . Phase velocity at the 

excitation frequency can be easily obtained from the theoretical dispersion curves. In this 

work, the phase velocity of the 0A  mode at 150 kHz is used as cmin  in Equation (36). The 

Courant–Friedrichs–Levy condition is used to obtain a numerically stable time step ( t)

[170]. 

ΔS
Δt =

c 3max
  (6.13) 

  where, maxc  is the maximum phase wave velocity of the propagating modes. In this work, 

the phase velocity of the S0 mode at 150 kHz is the maxc  in Equation (6.13). Thus, to obtain 

a converging solution, the spatial and the temporal step sizes are chosen to be 1.2 mm and 

0.01 μS, respectively, satisfying the Equations (6.12) and (6.13). 

Material points are chosen in a grid fashion with a spacing of ΔS  to model the plate 

with a layer spacing of 1 mm between each layer L1, L2 and L3. 41,750 material points 

were used in each layer in the pristine plate. A total of 125,250 material points was used in 

the simulation including all the three layers L1, L2 and L3. In case of the damaged plate 

(with hole), there was 41,610 material points in each layer and a total of 124,830 material 

points were used for the Peri-elastodynamic simulation. Each parent point is assigned with 

a family based on its Horizon and bonds were established between each pair of material 

points within the family. A 3.015ΔS was used as the Horizon size in the simulation. To 
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model a plate with a through-thickness hole, a pristine discretization is performed and then 

the material points are removed from the geometry to produce the hole. 

6.2 LAMB WAVE DISPERSION RELATION 

Dispersion curves of various Lamb wave modes are used to predict the existence of 

various modes at a particular excitation frequency [15]. Two types of Lamb wave modes 

exist in a plate based on the particle motion, named Symmetric modes (i.e., S0, S1, S2…) 

and Antisymmetric modes (i.e., A0, A1, A2…). Generation of the Lamb wave modes in a 

plate depends on the frequency of excitation, the thickness of the plate and the material 

properties (Density, Young’s modulus or Shear Modulus and Poisson’s ratio) of the 

material. Dispersion of various Lamb wave modes is obtained by solving Rayleigh-Lamb 

wave equations. Rayleigh-Lamb wave equation for symmetric Lamb wave modes is 

expressed by, 

                   


2tan(qh) 4k qp
= 2 2 2tan(ph) (k q )

                        (6.14) 

For antisymmetric modes, equation is written as follows, 




2 2 2tan(qh) (k q )
= 2tan(ph) 4k qp

   (6.15) 

Parameters in the above equations are expressed as,  

pଶ =
னమ

ୡై
మ − kଶ ;  qଶ =

னమ

ୡ౏
మ − kଶ; 

2μ(1 - ν)
c =L ρ(1 - 2ν)

; 
μ

c =s ρ
 (6.16)  
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 where ω , k , cs , c L , ν , μ , ρ  and h  are the angular frequency, wavenumber, the shear 

wave velocity, the longitudinal wave velocity, the poison’s ratio, the shear modulus, the 

density and the half thickness of the plate, respectively. In this work, the dispersion curves 

for various Lamb wave modes in an Aluminum 6061-T6 plate were calculated using the 

commercially available ‘Disperse’ software [160], designed by the Imperial College, 

London, UK, as shown in Figure 6.3a. The plate thickness was set to 2 mm and the material 

properties were set to the values listed in Table 6.1 

Table 6.1: Material properties. 

6.3 NUMERICAL COMPUTATION AND RESULTS 

The Peri-elastodynamic simulations were performed on a workstation with two Intel 

Xeon (R) CPU E5-2650 V3 2.30 GHz processors with total 128 GB RAM, in a single core. 

The simulation was run on MATLAB-18. a.  One simulation was completed within a 

reasonable time of ~24 h. Note that this problem is highly parallelizable and can be 

implemented with distributed clusters, GPUs, multiple threads, or a combination of these 

methods. Preliminary translation of this MATLAB program into multithreaded C++ 

resulted in a 20 times speedup. 

 

Aluminum 6061-T6 Material Properties 

Density, ρ 2700 kg/m3 

Young’s Modulus, E 69 GPa 

Poisson ratio, ν 0.33 
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6.3.1 LAMB WAVE PROPAGATION IN THE PRISTINE PLATE 

     In this work, fundamental Lamb wave modes (S0 and A0) are simulated which are  

 

Figure 6.4 Time domain in plane and out of plane displacement waveform: (a) ( , , )xu x y t  

at t = 20, 30 and 40 S  , (b) ( , , )yu x y t at t = 20, 40 and 60 S , (c) ( , , )zu x y t  at t = 20, 40 

and 60 S ) 
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widely used in the damage detection with ultrasonic SHM. Figure 6.4 shows the out of 

plane displacements ( , , )zu x y t  and, in plane displacements ( , , )xu x y t  and ( , , )yu x y t  for 

the Lamb wave propagation plotted at t = 20, 40 and 60 μS, respectively. Each stack of the 

figure is plotted with the respective displacement pattern in the layers L1, L2 and L3. It 

can be seen that the S0 mode travels faster than the A0 mode and confirms the dispersion 

curves. In wave propagation simulation, most inaccuracy comes from the boundary 

reflections if the results are not converged. The best approach to judge if the simulation of 

the wave propagation is converged is to evaluate the boundary reflections. In the present 

simulation, the reflected modes from the plate boundaries are clearly visible in the figures. 

Usually, there is a possibility of divergence of the solution at the boundaries due to the 

nonconvergence of the solution. However, with the specific steps with the Peri-

elastodynamic process described in this paper, the results will be converged, and bounded 

boundary reflections will be achieved.  

In the top (L1) and the bottom (L3) layers in Figure 6.4(a-1–a-3) and Figure 6.4(b-1–

b-3), both Symmetric and Antisymmetric modes (S0 and A0) are visible in the wave fields 

composed of in plane displacements. The contribution of the A0 mode in the in-plane 

motion at the middle layer (L2) of the plate is negligible but the out of plane motion is 

dominant. As shown in Figure 6.4(c-1–c-3), the out of plane displacement of the A0 mode 

is visible (i.e., contribution from ( , , )zu x y t ) while the S0 mode is barely noticeable. This 

is because the displacements of the in-plane particles of the S0 mode dominates over the 

out of plane motion of the particles. Also, the contribution of the S0 mode in the 

displacement  
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Figure 6.5 Space-time in plane and out of plane displacement fields: (a-1) ( , )xu x t  at the 

top (L1), (a-2) ( , )xu x t  at the middle layer (L2), (a-3) ( , )xu x t at the bottom layer (L3), (b-

1) ( , )zu x t at the top layer (L1), (b-2) ( , )zu x t at the middle layer (L2), (b-3) ( , )zu x t at the 

bottom layer (L3). 
 

of the middle layer (L2) of the plate is negligible, because, in the S0 mode, the middle layer 

(L2) remains undisturbed.  

Time-space representation of the in plane ( ( , )xu x t ) and the out of plane displacement (

( , )zu x t ) are presented in Figure 6.5. Displacements at the top, middle and the bottom 

surfaces (L1, L2 and L3), are presented to investigate the existence of the different Lamb 

wave modes and their contribution to the displacement in each layer. In Figure 6.5(a-1–a-3), 

it is observed that the S0 mode contributes to the in-plane displacement in all layers and the 

A0 mode contributes only to the top and the bottom layers. Time-space representation of the 

out of plane displacement is shown in Figure 6.5(b-1–b-3), which show that the A0 mode had 
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a higher amplitude than the S0 mode. A0 mode contributed to the displacement of all the 

layers (L1, L2 and L3), whereas, S0 mode contributed only to the top (L1) and the bottom 

(L3) layers.  

6.3.2 VECTOR FIELD REPRESENTATION OF THE LAMB WAVE MODES 

        To prove the accuracy of the Peri-Elastodynamic (PED)  simulation, the characteristics 

of the Lamb wave modes (S0 and A0), in plane and out of plane particle motion across-the-

thickness are plotted in Figure 6.6, after 41 μS.  Out of plane ( ( , , )zu x y t ) and in plane  (

( , , )xu x y t ) displacement distribution of A0 mode are extracted along the cross-sections 

C - C1 2  and ' 'C - C1 2 , of the plate. Similarly, the out of plane and the in-plane displacement 

distribution of S0 mode is plotted along the cross-section lines D - D1 2  and ' 'D - D1 2 , 

respectively. Vector fields and displacement distributions are shown in Figure 6.6a–d. It is 

observed in Figure 6.6a that all particles moved either upwards (+Z) or downwards (−Z) 

with variable amplitude (like bending motion) due to the generation of the A0 mode. In 

Figure 6.6c, the top and the bottom layers are symmetrically displaced with respect to the 

mid-plane and the displacement of the mid-plane is almost zero due to the generation of 

the S0 mode. In plane particle motion in A0 and S0 modes are also shown in Figure 6.6b, d. 

In Figure 6.6b, the particles at the top and the bottom layers are moved in the opposite 

directions along the in-plane direction and the displacement of the mid-plane is zero due 

to the generation of the A0 mode. In Figure 6.6c, the particle displacements are constant 

across the thickness due to the S0 mode. Vector fields and the mode shapes in Figure 6.6 

indicate that the Peri-Elastodynamics simulated the Lamb waves accurately.  
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Figure 6.6 Peri-elastodynamics (PED) simulation, vector field and displacement 
distribution of the S0 and A0 modes across the thickness of the plate: (a) Vector field of the 
A0 mode for out of plane motion, (b) Vector field of the A0 mode for in plane motion, (c) 
Vector field of the S0 mode for out of plane motion, (d) Vector field of the S0 mode for in 
plane motion. 

6.4 ANALYSIS OF THE SENSOR SIGNALS 

6.4.1 FREQUENCY-WAVENUMBER ANALYSIS: VERIFICATION OF THE SIMULATION 
RESULTS 

Multidimensional Fourier transform is widely used to separate the different Lamb 

wave modes [171]. Two-dimensional and three-dimensional Fourier transforms (2D or 3D 

FFT) are performed on space and time domain data. The equation that transforms the time-
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space wavefield data into the frequency-wavenumber representation of the wave field and 

can be expressed as follows [171], 

𝑢௣൫𝑘௝ , 𝜔൯ = න න න 𝑢௣൫𝑥௝,𝑡൯𝑒ିଶగ௜(𝐤.𝐱)𝑒ି௜ఠ௧𝑑𝑥ଵ𝑑𝑥ଶ𝑑𝑡
ஶ

ିஶ

ஶ

ିஶ

ஶ

ିஶ

 (6.17) 

where, 𝑗 take the values, 1 and 2, 𝑝 take values 1, 2 and 3, 𝑢௣(𝑥௝,𝑡) designates the 𝑝-th 

displacement after time 𝑡 at the point 𝑥௝ located on the 2D x-y plane. 𝑢௣൫𝑘௝ , 𝜔൯ designates 

the 𝑝-th displacement at frequency 𝜔 in reciprocal space of wavenumbers at the point 𝑘௝ 

located on the 2D reciprocal 𝑘௫ − 𝑘௬ plane. Here index, 1, 2 and 3 stands for the coordinate 

x, y and z. 

In multi-modal wave propagation analysis, distinguishing the different modes from a 

time domain signal is difficult, especially on a small plate where the wave modes tend to 

overlap. In this work, frequency-wavenumber plots are presented to visualize the different 

modes separately. This is also verified by comparing the simulated dispersion results with 

the theoretical dispersion curves. For this purpose, 2D and 3D Fast Fourier Transforms 

(FFT) were performed on the simulated displacement wave field to obtain the frequency-

wavenumber representations.  

To perform the 2D-FFT, out of plane ( ( , , )zu x y t ) and in plane ( ( , , )xu x y t ), 

displacement data are obtained across-the-thickness of the plate along the selected red 

dotted line shown in Figure 6.4(a-1). 163 spatial points with a resolution of 1.2 mm along 

the red line shown in Figure 6.4(a-1) were used in the analysis. Matrix size used to store 

the displacements wave field was 163 × 8000. Note that, the 2D FFT was performed on the 

displacement vectors obtained from all the three material layers (L1, L2 and L3).  
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Frequency-wavenumber domain representation of the in-plane displacement ( ( , , )xu x y t ) is 

depicted in Figure 6.7(a-1–a-3), respectively. Both the S0 and A0 modes are identified at  

Figure 6.7 Frequency-wavenumber (FW) representation of the displacement field at the 
pristine state: (a-1) FW of the in plane displacement at the top surface (L1), (a-2) FW of 
the in plane displacement at the mid-surface (L2), (a-3) FW of the in plane displacement 
at the bottom surface (L3), (b-1) FW of the out of plane displacement at the top surface 
(L1), (b-2) FW of the out of plane displacement at the mid-surface (L2), (b-3) FW of the 
out of plane displacement at the bottom surface (L3). 

the top and the bottom material layers. This is because they both significantly contributed to 

the energy of the in-plane wave motion. The amplitudes of the A0 mode are slightly greater 

than that of the S0 mode. A similar phenomenon is predicted from the tuning curve of the 

plate at 150 kHz. The contribution of the in-plane motion of the A0 mode to the energy of 

the middle layer is almost zero.  Similarly, Figure 6.7(b-1–b-3) are obtained from the 

wavenumber-frequency domain representation of the out of plane ( ( , , )zu x y t ) displacements 
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at the top (L1), middle (L2) and the bottom layer (L3), respectively. The energy distribution 

of the A0 mode is higher than the S0 mode at all the material layers. The S0 mode is visible 

only at the top and the bottom layers of very low amplitude. This is because the out of plane 

motion of the particles in S0 mode is very low and the displacement at the midplane is 

almost zero. 

        Next, the 3D-FFT is employed to transform the 3D displacement data ( ( , , )xu x y t , 

( , , )yu x y t  and ( , , )zu x y t ) into the frequency-wavenumber domain ( ( , , )x x yu k k  , 

( , , )y x yu k k   and ( , , )z x yu k k  ) and are shown in Figure 6.8a–c, respectively. In this work, 

frequency transformation is performed only on the data obtained from the top surface (L1). 

The size of the matrix used to store the 3D displacement data was 163 × 250 × 8000.  

 

Figure 6.8 3D Fourier transform of the in plane and the out of plane displacement at the 

top surface (L1). Wavenumber domain plots of (a) xu at 110 kHz, 150 kHz, 185 kHz and 

225 kHz, (b) yu at 110 kHz, 150 kHz, 185 kHz and 225 kHz, (c) zu at 110 kHz, 150 kHz, 

185 kHz and 225 kHz. 
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Wavenumber plots at the frequencies 110 kHz, 150 kHz, 185 kHz and 225 kHz, are 

presented in the Figures. It is seen that both the S0 and the A0 modes appeared in the form 

of two concentric circular rings. The radius of the circles corresponds to the wave numbers 

at the respective frequencies. Wavenumbers of the S0 and A0 modes at the 150 kHz are 

obtained from the Peri-Elastodynamic simulation and are 0.56 rad/mm and 0.187 rad/mm, 

respectively. A smaller circle corresponds to the S0 while the larger corresponds to the A0 

mode. It is also observed that the energy of the modes at the frequencies 110 kHz, 185 kHz 

and 225 kHz are lower compared to that of at the 150 kHz. This is because most of the 

energy of the modes is concentrated around the excitation frequency (150 kHz).  

 

Figure 6.9 Comparison of theoretical and numerical (Peri-Elastodynamics) wavenumber 
domain at 150 kHz: (a) xu at 150 kHz, (b) yu at 150 kHz, (c) zu at 150 kHz. 

To verify the directional dependency of the Lamb wave propagation, 2D wavenumber 

plots ( ( , )x x yu k k , ( , )y x yu k k and ( , )z x yu k k ) at ωୡ = 150 kHz, are obtained from the 3D FFT 

and were compared with those obtained from the theoretical predictions using Disperse 

software at 150 kHz. Theoretical wavenumber plot is superimposed on the numerically 

obtained wavenumber plots in Figure 6.9a–c. Good agreements between the numerical and 

analytical results are obtained. It shows that the Peri-elastodynamic can predict the 

dispersion relation of fundamental Lamb wave modes accurately in all directions. 
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Therefore, the strong evidences discussed above demonstrate that the Peri-Elastodynamics 

would be a potential tool to effectively simulate the Lamb wave modes for NDE and SHM 

applications. 

6.5 CONCLUSIONS 

A numerical wave field computational tool called Peri-Elastodynamics is developed 

to simulate the guided waves in a plate-like structure with surface mounted PZT. Feasibility 

of the method is proved by simulating an SHM problem with PZT induced Lamb wave 

propagation in an isotropic aluminum plate. Fundamental symmetric (S0) and 

antisymmetric (A0) Lamb wave modes were generated. Further, their characteristics were 

investigated and compared with the theoretical predictions. Particle displacements due to 

S0 and A0 mode propagation were visualized through the vector-field plots across-the-

thickness of the plate. Lamb wave modes simulated by the numerical technique were 

presented in the frequency-wavenumber domain and compared with those obtained from 

the analytical predictions. It can be concluded that if the process described in the 

dissertation is adopted meticulously, the Peri-Elastodynamics can simulate the Lamb wave 

propagation accurately. The computational time for the SHM problem presented in this 

paper is approximately ~24 h but can be easily accelerated by implementing the parallel 

computing. In this dissertation, no parallel computing facility was used. Based on the 

reported computation time in the literature, it is anticipated that with the proposed 

formulation the wave propagation simulation using Peri-Elastodynamic will be time 

efficient. But it is difficult to comment however, if there has been a gain in the computation 

time compared to the existing methods, as a direct comparison of a similar problem solved 

using different method is necessary and it is left for the future research. Such numerical 
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computation is valuable for the computational NDE of structures and devices, where 

experimentally studying the wave damage interactions are expensive tasks. In future, 

virtual wave propagation in structure using the complementary tools will help avoid 

expensive experiments but extract the right wave feature to first characterize and then 

certify the materials and devices.  
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CHAPTER 7 

EXPERIMENTAL VALIDATION OF PERIDYANMIC SIMULATION 
FOR GUIDED LAMB WAVE PROPAGATION AND DAMAGE 

INTERACTION 

        In this chapter, PED was further extended to simulate Lamb wave-damage interaction 

with specific damages scenarios such as cracks in aluminum 6061-T6 plate. PED simulated 

sensor signals for pristine and damaged plate were verified with those obtained from 

conducting pitch-catch experiments on plates with similar dimensions and damage 

scenarios. Further, accuracy of PED was investigated by comparing simulated symmetric 

and anti-symmetric Lamb wave modes to the experimenal results. Additinally, effeciency 

of the PED was investigated by comparing simulation parameters (i.e., Memory 

requirement, Simulation run time and CPU core used) with FEM based COMSOL 

simulation results. 

7.1 MATERIAL GEOMETRY AND CRACK MODELLING 

        The wave-damage interaction study is performed using a through-thickness crack of 

length 16 mm x 2.4 mm, located at a 70 mm distance from the PZT actuator (Ref. Fig. 7.1). 

A crack on the centerline (red dotted line in Fig. 7.1) and a crack offset from the centerline 

are considered as shown in Fig. 7.1(a) and 7.1(b). Spatial and the temporal step sizes are 

chosen to be 1.2 mm and 0.01 μS, respectively, satisfying the requirements of equations 

(6.12) and (6.13). A total of 41,750 material points was used to discretize each layer. Each 

parent point is assigned with a family based on its Horizon and bonds were established 
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between each pair of material points within the family. A 3.015ΔS was used as the Horizon 

size in the simulation. To model a plate with a through-thickness crack, first a pristine 

discretization is performed and then crack is modelled by assigning bond constant zero to 

bonds those pass through the crack zone.  

 

Figure 7.1 The geometry of aluminum 6061-T6 plate with crack: (a) central-crack, (b) 
offset-crack. 

7.2 EXPERIMENTAL DESIGN FOR THE VALIDATION OF PED 

        To validate the PED results, pitch-catch experiments were conducted on pristine and  

damaged aluminum 6061-T6 plates as shown in the Figure 7.2a and 7.2b. In this study, the 

plates with a crack along the center line and with a crack offset from the center line  were 

considered as shown in Figure 7.2c & Figure 7.2d. Dimensons of the plate are the same as 

used in the PED simulation. Two high-frequency PZT (type PZT 5A, Purchased from 

STEMiNC, Florida)  were attched to the plate with Hysol 9340 adhesive. PZT’s were 7 

mm in diamater and 0.5 mm in thickness.  Distance between two PZT’s was kept 104 mm, 

measured from their center. One of the PZT was used as an actuator while the other was 

used as a sensor.  A 3.5 count tone-burst, with a central-frequency of ~150 KHz and ~20V 

amplitude (~10V peak-to-peak)  was used to excite the actuator to generate the Lamb wave 
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propagation in the plate. Tektronix AFG3021C (25 MHz, 1-Ch Arbitrary Function 

Generator, Tektronix Inc.) was used to generate the tone-burst actuation at the interval 

of 1 ms and Tektronix MDO3024 (200 MHz, 4-Ch Mixed Domain Oscilloscope, 

Tektronix Inc.) was used to record the signals from the sensor. Sensor signal was 

recorded after averaging a total of 500 signals (to improve signal-to-noise ratio). 

Sampling rate and signal length were set to 50MS/s and 10,000, respectively.  

 

Figure 7.2 (a) Experimental set-up of pitch-catch experiments, (b) Pristine plate, (c) Plate 
with a center-crack, (d) Plate with a offset-crack.    
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7.3 COMPUTATIONAL VERIFICATION OF THE SIMULATION 

        Commercially available Finite Element (FE) based computational tool COMSOL 

Multiphysics was used to simulate the structural mechanics problem coupled with the 

piezoelectric actuator and sensor. To model the ultrasonic guided wave propagation in the 

aluminum plate, Solid Mechanics and Electrostatics modules, a multi-physics approach in 

COMSOL, was employed. COMSOL utilizes implicit scheme to solve the transient 

problems. In this study, the direct solver MUMPS was chosen over an iterative solver for 

its robustness. All the direct solvers in COMSOL require significant amounts of RAM 

where MUMPS can store the solution out-of-core i.e., on to the hard disk. Moreover, 

MUMPS is substantially faster than iterative solvers. The absolute tolerance of the time-

dependent solver used a global method of scaling with a specified tolerance of 0.001. The 

setting for time steps was set to generalized-alpha method with intermediate time steps, 

a linear predictor and a maximum time step of 50 ns. 

        The mechanical and electrical properties of the aluminum plate and the piezoelectric 

components were considered same as the properties used in the experimental design. To 

excite the PZT of the actuator, a 20V 3.5 count tone-burst signal was applied at the electric 

potential terminal. The signal response was collected from the sensing PZT for the entire 

duration of the simulation which was 80 𝜇𝑠. Free tetrahedral (tets) meshes generated by 

COMSOL multi-physics were utilized to generate mesh for the entire aluminum domain 

where the minimum mesh size was varied from 0.1 mm to 1.2 mm as shown in Figure 7.3 

(b&c). On the other hand, the minimum mesh size for the PZT actuator and sensor were 

varied from 0.01 mm to 0.2 mm as shown in Figure7.3(a). A mesh convergence study was 

performed starting from the maximum mesh size of 2 mm to a minimum mesh size of 1.2 
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mm. As the mesh size was decreased the accuracy of the simulation improved at the 

expense of increased computational time. A total of 24 CPU cores with a maximum 

memory of 80 GB were utilized to solve this problem in 45 hours. 

 

Figure 7.3 Three-dimensional FE discretization of the aluminum plate and PZT: (a) 
Discretization of the PZT, (b) Discretization of the plate and PZT, (c) Discretization of the 
plate. 

7.4 VALIDATION AND VERIFICATION OF THE PED SIMULATION 

        In this section, accuracy and efficiency of the PED technique to simulate Lamb wave 

propagation is presented. Time domain signal (at sensor location S1) obtained from the 

PED was compared with the numerically (COMSOL) and analytically 

(WaveFormRevealer [172, 173]) obtained sensor signals and the signals acquired from the 

pitch-catch experiments on a pristine aluminum plate. Note that, in this study a square PZT 
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was employed for PED simulation whereas circular PZT was used for COMSOL and the 

experiment. However, due to isotropic nature of the plate, at the far-field wave fronts were 

circular and the guided wave mode when fully developed, the effect of PZT size was not 

diagnosed. In plane displacement ( ( , , )xu x y t ) from the PED was used to compare with the 

output voltage obtained from COMSOL, WFR and Experiment. Since sensor in the plate 

is located on the center line along the X-axis as shown in Figure 7.2. (b, c and d), output 

voltage at sensor terminal is contributed primarily by ( , , )xu x y t . To capture sensor signal 

from the PED simulation, time-domain signal was collected from a material point located 

at 97 mm away from the PZT edge along the center line from the actuator ( 104centerL mm

& 97effL mm ). Normalized amplitude of the sensor signals obtained from Experiment, 

COMSOL, WFR and PED, respectively, was plotted in the time-domain as shown in the 

Figure 7.4. Sensor signals obtained from the PED, COMSOL and WFR were also 

compared with the experimental results to check the accuracy of those techniques. Good 

agreement between PED and the experiment was observed for both symmetric and anti-

symmetric modes as shown in the Figure 7.4.b. the symmetric mode from COMSOL is in 

good agreement with the experiment whereas the anti-symmetric mode slightly deviates as 

shown in the Figure 7.4.c, WaveFormRevealer (WFR) predicted the anti-symmetric mode 

well but overestimated the symmetric mode as shown in the Figure 7.4.d.  Mismatch of the 

symmetric mode may be attributed to limitation of the WFR software such as, being an 

analytical method, material property of PZT could not be provided. To verify accuracy of 

the proposed PED techniques and to compare with existing simulation techniques, error of 

symmetric and anti-symmetric mode is calculated by comparing them with experimental 

results by using the Eq.7.1.  
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( )env
simA t  and ( )env

expA t  are the envelope of experimental and simulated sensor signal. 

       A similar approach was used to calculate error of the COMSOL and WFR predicted 

sensor signal. Error analysis results are shown in the Figure 7.4.e. Error of symmetric and 

anti-symmetric mode of the PED simulation were 2.2% and 0.5%, respectively, which is 

less than the maximum permissible error tolerance of 3%. Significant error for symmetric 

mode of the WFR was observed. Error percentage for COMSOL simulation was 2.2% and 

0.5%, respectively. PED simulation provided a better accuracy for wave propagation 

simulation then COMSOL and WFR.   

        To investigate the efficiency of the PED with respect to other numerical tool, to solve 

the proposed wave propagation problem, memory requirement, simulation run time and 

CPU core used for both PED and COMSOL were plotted in the Figure 7.4.f. Note that, 

element size was kept same. While COMSOL can use multiple cores (i.e., 24 cores) for 

running the simulation, PED used only one core. Memory consumption and simulation run 

time for PED is smaller than that of COMSOL simulation. However, parallelization of the 

PED code can improve simulation run time significantly.        



www.manaraa.com

 

141 
 

Figure 7.4 Time-domian comaprison of sensor signal: (a) Experiment, COMSOL, WFR 
and PED, (b) PED and Experiment, (c) Comsol and Experiment, (d) WFR and Experiment, 
(d) Error of simulated symmteric and anti-symmteric modes with respect to experimental 
results,  (d) Memory requirement and simulation run time of PED and COMSOL 
simulation. 

        Simulation results from the central-crack and offset-crack are presented in Figure 7.5 

and 7.6, respectively. To observe the reflection and transmission of the respective wave 

modes from the damage location, in-plane displacement wavefields, after three different 

time steps (40µS, 50µS and 60µS), are shown in Figure 7.5(a1-a3). It can be seen that, 

while the reflected S0 mode from the crack location is observed after time 40µS, the same 

mode disappeared after 50µS and 60µS due to the interference with the parent mode with 

the reflected boundary mode. Alternatively, reflected A0 mode is identifiable after both 

50µS and 60µS time steps. In case of out-of-plane displacements, reflected S0 mode is not 

quite   
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Figure 7.5 Time-domain displacement waveform in a plate with a central-crack: (a1)  
( , , )xu x y t  at t=40 S , (a2) ( , , )xu x y t at t=50 S , (a3) ( , , )xu x y t  at t=60 S ,(b1) ( , , )zu x y t  

at t=40 S , (b2) ( , , )zu x y t at t=50 S , (b3) ( , , )zu x y t  at t=60 S . 

 

 

 

 

 

 

 

 

 

 

Figure 7.6 Time-domain displacement waveform in a plate with a offset-crack: (a1)  
( , , )xu x y t  at t=40 S , (a2)  ( , , )xu x y t at t=50 S , (a3)  ( , , )xu x y t  at t=60 S , (b1)  

( , , )zu x y t  at t=40 S , (b2)  ( , , )zu x y t at t=50 S , (b3)  ( , , )zu x y t  at t=60 S . 
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visible in any of the time steps (See Figure 7.5(b1 – b3)) due to its minor contribution to 

the out-of-plane wave propagation. However, reflected A0 mode is observed after both 

50µS and 60µS time steps. 

        In-plane displacement wave fields for offset-crack (See Figure 7.1(b)) after times 

40µS, 50µS and 60µS are shown in Figure 7.6(a1-a3).  Both reflection and transmission of  

the fundamental Lamb wave modes are observed. Similar to the center-crack scenario, in 

the case of the offset-crack, the reflected S0 mode is observed only after the time 40µS. 

Reflection of the S0 mode after other two-time steps is barely noticeable due to the 

interference with the boundary reflections. However, the reflected A0 mode is visible after 

50µS and 60µS. Evaluating Figure 7.6(b1-b3), in comparison to the center-crack, a similar 

argument can also be made for the offset-crack in relation to the A0 and S0 modes existed 

at different time steps.  

        Next, to distinguish the amplitude of the reflected and transmitted Lamb wave modes, 

time-space representation of the in-plane and out-of-plane displacements for both the 

scenarios with center-crack and the offset-crack are analyzed. Displacement wave fields 

are computed along a selected line shown in the Figure 7.1b.  In case of the center-crack 

scenario, both the in-plane ( ( , )xu x t ) reflection and the transmission of the incident wave 

are clearly visible in Figure 7.7(a1). A similar phenomenon can also be noticed from Figure 

7.7(a2) for the center-crack out-of-plane displacement ( ( , )zu x t ). Boundary reflection of 

the modes can be observed in Figure 7.7(a1 and a2). Likewise, in case of offset-crack 

scenario, reflection and transmission from the offset-crack damage are also demonstrated 

in Figure15(b1 and b2) considering the in-plane and the out-of-plane displacement modes.  
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        Further the time history signals from the damage free pristine plate at sensor location 

S1 marked in Figure 7.1a are compared with the signals from the center-line crack and 

offset-crack scenario. Fig. 7.8.a compares the output response (at S1) obtained from 

experiments for pristine, center-crack and offset-crack, respectively. Figure7.8. b compares 

the output response (at S1) obtained from PED for the pristine, center-crack and offset 

crack, respectively. it can be seen that the first arrival of the symmetric and anti-symmetric 

wave modes for both experiment and PED at the sensor location S1 are slightly delayed  

Figure 7.7 Space-time wavefield representations for the top surface of the plate with a 
through-thickness crack: (a-1) ( , )xu x t  for a plate with a central-crack, (a-2) ( , )zu x t  for a 

plate with a with a central-crack, (b-1) ( , )xu x t  for a plate with offset-crack, (b-2) ( , )zu x t  

for a plate with offset- crack.  
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Figure 7.8 Comparison of time dependent signals obatined from PED and experiment at 
sensor location S1, in a pristine plate, plate with a crack along centerline and a plate with 
a off-set crack a) sensor signals at location S1 obtained from experiment, b) sensor signals 
at location S1 obtained from PED, c) sensor signals for centerline crack obtained from PED 
and experiment, d) sensor signals for offset crack obtained from PED and experiment. 

due to the encounter of the crack. The delay is comparatively higher at S1 location due to 

the center-line crack, compared to the offset-crack. Due to an offset-crack edge, the 

reflected wave energy reflects at an angle and the senor S1 on the centerline have less effect 

compared to a crack present along the centerline. In Figure 7.8.c, sensor signal for center-

line crack obatined from both PED and experiment compared. Error of symmetric and anti-

symmetric wave modes by PED prediction was 1.92% and 0.479%, respectively. In Figure 

16.d, sensor signal for offset-crack obatined from both PED and experiment compared. 

Error of symmetric and anti-symmetric wave modes by PED prediction was 1.21% and 
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0.81%, respectively. These features were properly simulated by the PED method. Hence, 

it can be concluded that PED method is a suitable wave simulation tool for computational 

NDE and SHM.        

7.5 CONCLUSION 

      In this chapter, accuracy of the PED was tested. Time domain sensor signals from PED 

was compared with those obtained from experiments, analytical (WaveformRevealer 

[131]) and COMSOL. It was found that PED simulated Lamb wave modes accurately. 

Error of symmetric and anti-symmetric Lamb wave modes by PED prediction was less than 

3%. PED was found to very efficient (in terms of memory consumption and simulation run 

time) compare to COMSOL. PED was also extended to wave-damage interaction 

simulation by considering plate with cracks (i.e., centerline-crack and offset-crack 

scenario) and verified with experimental results for center and offset-crack. PED method 

can be employed as a suitable wave propagation simulation tool for computational NDE 

and SHM.       
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CHAPTER 8 

SUMMARY AND CONCLUSIONS 

        Material state awareness (MSA) of composites using conventional Structural health 

monitoring (SHM) and Nondestructive Evaluation (NDE) method is limited by finding the 

size and the locations of the cracks and the delamination in a composite structure. To aid 

the progressive failure models using the gradual degradation model, the awareness of the 

precursor damage state and quantification of the degraded material properties at the early 

stage is necessary, which is challenging using the current SHM/NDE methods.  

        To quantify the material degradation during early stage of damage of composites, 

online method, named guided coda wave interferometry (CWI) was employed for damage 

accumulation quantification in woven composite material under cyclic loading. Stretch 

parameter (Quantifies change in the coda wave) was measured by performing cross-

correlation of two consecutive sensor signals collected at specific cycle interval during 

fatigue loading. Damage growth in the composite material was obtained from the 

cumulative stretch parameter. Precursor damage events and stress-relaxation were 

identified from the damage growth curve. To verify the online method, a complementary 

offline NDE method, named Quantitative Ultrasonic Image Correlation (QUIC) based on 

scanning acoustic microscope was employed. The unique combination of nonlocal 

mechanics and scanning acoustic microscope resulted in a parameter called Nonlocal 

Damage Entropy for the precursor awareness. During the early stage of the life of the 

composite, the nonlocal damage entropy was plotted to demonstrate the degradation of the 
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material properties via awareness of the precursor damage state. Visual proofs for the 

precursor damage states are provided with the digital images obtained from the micro-

optical microscopy, the scanning acoustic microscopy and the scanning electron 

microscopy. It was found that sensor signals and QUIC data are influenced by stress-

relaxation phenomena of the composite. To verify, CWI was extended to quantify stress-

relaxation phenomena in the composites and which was verified by nonlinear ultrasonic of 

Lamb wave.  

        Stress-relaxation phenomena in composites is characterized by CWI and nonlinearity 

analysis in Lamb wave propagation. Cumulative stretch parameter from the CWI analysis 

was found to be sensitive to stress-relaxation in composites. The second-order nonlinearity 

parameter of the Lamb wave was also found to be influenced by damage and relaxation. 

Remarkably, ~27% reduction of acoustic-nonlinearity was observed during the relaxation 

periods. The relaxation parameters (i.e., rate and degree) were correlated to the fatigue 

cycles and loading frequencies. 

         Experimental data obtained from the MSA can be included in a predictive tool for 

accurate wave propagation simulation. Degradation parameters and relaxation parameters 

from experiments can be included in a computational NDE tool for accurate prediction of 

signals from diagnostic embedded sensors. Additionally, to understand the sensor signals 

and extract damage information, a new efficient and accurate wave propagation tool was 

devised. 

        Peridynamic based elastodynamic computation tool named Peri-elastodynamics 

(PED) was developed to simulate the Lamb wave modes in materials. This newly 

developed technique can simulate the fundamental Lamb wave modes accurately. In 
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addition to simulating the guided ultrasonic wave modes in pristine material, PED was also 

employed to simulate Lamb wave propagation in plate with crack. The accuracy of the 

proposed technique is verified by comparing results with those obtained from experiments. 

The proposed tool is expected to significantly advance the virtual analysis of wave 

propagation, computational nondestructive evaluation (CNDE) and computational 

structural health monitoring (CSHM). 
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CHAPTER 9 

SUBSURFACE PRESSURE PROFOLING: A NOVEL MATHEMATICAL 
PARADIGM FOR COMPUTING COLONY PRESSURE ON 

SUBSTRATE DURING FUNGUL INFECTIONS 

        With changes in global climate, fungal pathogens are a growing global threat to 

human health, agricultural sustainability, and economy [174-180]. Contamination of crops 

with mycotoxins upon infections by plant pathogens result in an annual loss of $1.3-2.5 

billions only to the United States alone [181]. In addition, fungal infections in humans have 

significantly increased globally with the increasing immunocompromised world 

population over the last two decades [182]. Children and the elderly, as well as individuals 

undergoing organ transplantation or other major surgery, or who are suffering from AIDS 

are at high risk of developing life-threatening fungal infections from common human 

pathogens such as Candida albicans, Aspergillus fumigatus, and Cryptococcus neoformans 

[183, 184]. It is estimated that the total direct cost for US healthcare to treat these invasive 

fungal infections is $2.6 billion annually with an average per patient cost of approximately 

$31,000 [185, 186]. Hence, there is a new drive for discovery of new antifungal molecules, 

which will need reliable and robust quantitative tools for determination of therapeutic 

efficacy. Such tools should be able to accurately compare fungal expansion and potency of 

hyphal penetration in a host under pathophysiological and therapeutic conditions.  
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        To address the critical need for quantitative tools for measuring fungal invasion, we 

have recently developed a methodology for 3D tomography of a growing fungal colony 

[187]. We have already demonstrated in Aspergillus parasiticus, an aflatoxin producing 

plant pathogen, that our method that we call Quantitative Acosutic Contrast Tomography 

(Q-ACT), can provide physical strength profiles (viscoelastic parameters) as well as hyphal 

architecture at multiple scales in a growing colony [187]. In this study we have expanded 

the functionality of Q-ACT by investigating the physical changes that occur within the 

substrate beneath and around the fungal colony. It is already established that fungal 

invasions during infection are associated with enormous turgor pressure [188] that helps 

the hyphae to penetrate the substrate [188-191]. We reason that such an orchestrated 

pressure distribution on the substrate will depend on the mycelial growth pattern and the 

physical parameters that determine the strength of the fungal hyphae. Interestingly, our 

recent Q-ACT based studies already demonstrated that physical strength profiles within the 

mycelia correlate inherently with secondary metabolism [187] suggesting that pressure 

profiles generated by fungal colonies are critical determinants of their metabolic state as 

well as their invasiveness into the substrate. Currently, very little is known about relation 

between the generation of the pressure by a fungal colony on the substrate and the 

collective physical behavior of the multicellular system of the fungal colony.  The primary 

reason for this knowledge gap is the absence of an existing methodology to map the 

pressure profiles exerted by a fungal colony on its substrate. In this work, we introduce an 

analytical model for computation of the mechanical pressure exerted by an A. parasiticus 

colony.  
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Figure 9.1 Wrinkle formation within the Aspergillus growth medium: (a) A. parasiticus 
grown on solid YES agar growth medium for 2d was studied using Q-ACT. Lower panel 
illustrates the force profiles exerted on the solid agar substrate from the colony edge within 
inset E; (b) Representative ultrasound micrographs along the depth obtained from Q-ACT 
at the colony edge within inset E, green arrows denote the wrinkles observed in the 
substrate due to colony expansion; (c) Demonstration of the variation of wrinkle 
wavelengths along the depths of agar that are 16 m apart; (d) plot of wrinkle wavelength 
along depth of the substrate   
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9.1 IMAGING OF THE WRINKLES IN THE GROWTH SUBSTRATE WITH Q-ACT 

        As a first step to establish the mathematical foundation for subsurface pressure 

profiling, we performed Q-ACT imaging on a sample set of 2d old 12 A. parasiticus 

colonies grown on a rich solid growth medium (yeast extract sucrose agar, YES agar). 

Upon investigation of the tomographs, of the substrate below the colony, we surprisingly 

discovered that the colony growth resulted in the creation of wrinkles in the media, that 

these were uniform and continuous around and near the edge of the colony (Figure 9.1a). 

Visual assessment of the wrinkles in the tomograph suggested that they were a reflection 

of the pressure with which the colony pushes the substrate. To compute the pressure that 

resulted in the wrinkles in the substrate, we next proceeded to understand the relation 

between the pressure profiles from the colony and the wrinkle patterns created in the 

substrate. Using Q-ACT we measured the wrinkle wavelengths at different depths (Figure 

9.1a-b). The measurements revealed that the wrinkle wavelengths were not constant values 

but varied across the depth (increased with the depth) of the media. Fig 9.1c shows the 

mean values of the wrinkle wavelengths across depth obtained from a 2d old A. parasiticus 

colony. We also noted that the wrinkle wavelength (L in 𝜇m.) followed a logarithmic 

pattern across the depth (d in 𝜇m.), and could expressed as a mathematical equation as 

follows: 

d=a*ln(L)+b,                                                                                                                (9.1) 

where, parameters ‘a’ and ‘b’ will depend on the fungal species, the growth media and the 

growth environment. For a 2d colony of A. parasiticus grown on YES media, a= ~-79±6.5 

and b=~358±56. 
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Based on the wavelength profile, we hypothesized that the pressures exerted by the colony 

were also not uniform across the depth. Hence, we proceeded to determine the pressure 

profiles using a computational analysis based on the fundamental physics of incremental 

stress.   

9.2 FORMULATION OF THE RELATION BETWEEN SUBSTRATE WRINKLES 
AND THE PRESSURE DISTRIBUTION FROM THE FUNGAL COLONY 

        Euler buckling theory is conventionally employed in Engineering to predict the 

critical buckling pressure. According to this theory, buckling pressure is inherently 

correlated to the mode of buckling, which represents the number of inflection points in the 

structure. However, previous studies have indicated that the Euler buckling theory is most 

effective in predicting the critical buckling pressure when the thickness of the medium is 

~5 times less than the wavelength of the instabilities. Below the wavelength/thickness ratio 

~5, the Euler theory results infinite critical pressure [192], as shown in Fig. 9.2. To avoid 

such singularity problem, Biot’s incremental stress theory was proposed [192]. Biot’s 

theory was used extensively in geophysics to study low–amplitude wrinkle formation in 

the stratified sedimentary rock bed [192-197]. According to this theory, wrinkles originated 

from the instability caused by compressive load acting parallel to the media [195, 196, 

198]. A general relation between the wrinkle wavelengths and the critical compressive load 

was formulated to quantify the pressure required to form the wrinkles in the rock bed. It 

has been used extensively for the study of folding in isotropic material as well as in 

anisotropic and viscoelastic media [192, 193, 199, 200]. In this work, since a fungal colony 

is bounded by its growth medium, we reasoned that the application of incremental stress 

theory [201] in viscoelastic media proposed by Biot is not adequate to calculate the critical 

pressure exerted by a fungal colony.  
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Figure 9.2 Comparison of Critical pressure / Shear modulus ratio with the 
Wavelength/Thickness ratio obtained from the Euler buckling theory and the linearized 
Biot theory. Euler theory predicts that critical pressure goes to infinity when 
Wavelength/Thickness ratio is less than ~5, whereas, Biot’s theory predicts a finite value 
at the same range.  

      To address the uniqueness of the wrinkles created by a fungal colony, here we modified 

the Biot’s formulation and derived the equilibrium equation from the fundamental physics 

by applying the physics of incremental stress theory, which allowed us to determine the 

physics of deformations of the agar medium under the initial stress with small incremental 

perturbations. Incremental stresses at a point is generated due to the displacement and 

rotation of the continuum body from the reference to deformed configuration [202]. In the 

conventional linear continuum mechanics incremental stresses are not considered. 

However, for determination of pressure profiles below the Aspergillus colony, the 
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incremental stress was a critical feature that needed consideration. Based on our visual 

assessment of creation of wrinkles with fungal growth, we speculated that the when 

sufficient initial stress builds up on the growth medium due to expansion of the pathogenic 

colony, wrinkles are developed due to the resistance by the media. As the colony expanded, 

further pressure applied on the agar media acted as the initial stress and was further 

incremented. This incremental pressure was less than the initial pressure that existed in the 

medium.  

      Our proposed analytical model is shown in Figure 9.3. The model takes into account 

the assumption for a fungal colony, that the incremental stress is much smaller than the 

initial stress as described above. The annotations used to denote the stress fields are 

described under SI-1. Based on our observations that the colony predominantly expands 

radially, we considered that the initial stresses acting on the growth medium were only 

axial stress (S11= Px). The vertical pressure (S22) and shear stress (S12) were neglected based 

on the assumption that the colony weight was negligibly smaller than the value needed to 

create a wrinkle in the agar medium. Further, in our analysis, vertical pressure is developed 

due to the accumulation of the fungal biomass on the surface of host medium. However, 

the wrinkles that formed as a result were away from the colony (Figure 9.1). Formation of 

wrinkles were not observed in a 1d old colony but were clearly visible in 2d old colonies, 

which suggested that a minimum threshold physical strength profile of the colony is needed 

to exert enough pressure from the colony tips to form such wrinkles. The phenomenon was 

repeatable in all 12 A. parasiticus colonies that were studied. Based on these observations 

we conducted all the computational analyses for this work with 2d old colonies. 
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Figure 9.3 A schematic illustration of our proposed incremental stress model. Upper panel. 
Force profiles resulting from colony edge pushing onto the substrate. Incremental stress 
condition in the cube within the substrate is shown below. Lower panel. I. Representation 
of initial stresses S11, S12, S22 and the incremental stresses s11, s12, s22. II. sξξ, sηη, sηξ 
are the increment of total stress at the displacement point P(ξ,η) after deformation.  

Through rigorous mathematical derivation, applying the incremental stress theory the 

linearized equation of equilibrium for incremental displacement could be written as [192] 

        
డర௨

డ௬ర
+2A 

డర௨

డ௫మడ௬మ
+B 

డర௨

డ௫ర
=0            
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డర௩

డ௬ర
+2A 

డర௩

డ௫మడ௬మ
+B 

డర௩

డ௫ర
=0,                                       (9.2) 

Where, u and v are the displacement of the medium along X & Y direction, respectively. 

Coefficients A and B are the function of the initial stresses and the material properties and 

could be expressed as [192],  

A= [𝐴ଶ-(B+S11+G) (B+S22+G) + (S22+G) (S11+G)]/ [2A (S22+G)], 

B= (S11+G)/ (S22+G), A=2G+λ, B=λ, G=E/ [2(1+ ν)]                                                                            

λ=Eν /[(1+ ν)(1-2ν)], 

Where, G is modulus of Rigidity, E is Young's modulus, ν is Poisson's ratio and G and λ 

are the lame’s constant, respectively. Total displacements are equal to the initial 

displacement plus the incremental displacement. Incremental boundary stresses which is 

defined as the difference between the actual boundary forces after deformation and their 

initial value before deformation were expressed as [203]  

Δfx = ( S11 - S12ω + S11eyy - S12exy) cos (n,x) + (S12 – S22ω -S11exy +S12exy) cos (n,y)  

Δfy = (S12 + S11ω + S12eyy – S22exy) cos (n,x) +(S22 + S12 ω -S12exy +S22exx) cos (n,y)      (9.3)           

where S11, S12 S22  are the incremental stress components, S11,S22, and S12 are Intital stress 

components, exx, exy, and eyy  are the strain components,respectively. 

     Since our Q-ACT revealed that wrinkles are formed a sinusoidal pattern, we used 

sinusoidal displacement function that satisfied the boundary condition and was assumed to 

represent the wrinkle formation in the medium. The solution of the equation Eq.(43) 

therefore could be expressed as [192]  
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u= Ca1(ly) sin (lx)    and    v= Ca2(ly) cos (lx)                               (9.4) 

where, l=2π/L, L is wrinkle wavelength and Ca1(ly), Ca2(ly) are the functions of y. We 

expressed the displacement function as  

u= [C1cos (m1ly) +C2cos (m2ly)] sin (lx) &  

v=[C3cos (m1ly) +C4cos (m2ly)] cos (lx),                                                                     (9.5) 

Where, m1=+ඥ𝐀 + √𝐀𝟐 − 𝐁 and m2=+ඥ𝐀 − √𝐀𝟐 − 𝐁.  

      The displacement functions are the solution of the equilibrium equation and must 

satisfy the boundary conditions. In order to apply boundary conditions, the displacement 

functions at the bottom of the agar media should be zero, as the displacements between the 

interface of the agar and plate are negligible. To impose the boundary conditions at the free 

surface, we needed to calculate the incremental boundary stresses after the deformation. 

The initial stress S11 =Px, acted parallel to the x axis, due to which, the surface is free from 

the stress. After deformation the free surface deformed as a corrugated sinusoidal surface 

and incremental stresses (Δfx and Δfy) were generated due to the deformation of the 

medium. The boundary conditions were applied to represent the physics, 

 u=0 & v=0, at Y=0 and also Δfx=S12+Pxexy =0, Δfy=S22 =0 at Y=H, traction free surface.  

Upon substituting the displacement functions into the boundary conditions and setting 

S11=Px, S22=0 and S12=0 in the incremental stress-strain relationship, S22=A
డ௩

డ௬
+B

డ௨

డ௫
, 

S12=G(
డ௨

డ௬
+

డ௩

డ௫
) and 𝑒௫௬ =

ଵ

ଶ
ቀ

డ௨

డ௬
+

డ௩

డ௫
ቁ, we obtained four homogenous equations which was 
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written in a matrix form (not shown) and for which, a solution exists if the determinant of 

the matrix becomes zero.   

Figure 9.4 Pressure exerted on the substrate along depth. Upper panel. Cartoon describing 
the wrinkle formation in the substrate as a result of the Aspergillus expansion. Lower panel. 
Pressure values computed along depth. Mean values of the wrinkle wavelengths across 
different depths of the media are also shown alongside pressure values along the depth of 
the substrate.  
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 In the matrix the input parameters are wrinkle wavelength, L, height of agar media, H, 

elastic modulus, E, and the Poisson ratio, ν, respectively. The horizontal pressure, S11 =Px, 

was calculated by optimizing the error function when minimum. The horizontal pressure 

distributions (axial stress) were determined at different wrinkle wavelengths across the 

depth for all the specimens. 

9.3 DETERMINATION OF PRESSURE PROFILES ON THE SUBSTRATE FROM THE 
ASPERGILLUS COLONY 

        To determine the pressure from the A. parasiticus colony that created the observed 

wrinkles in Fig. 8.1, we incorporated in our calculations the following values: depth of the 

agar media, H=2.14±0.08 mm, Elastic Modulus, E, of the Agar media = 700± 21 kPa, that 

was determined from the wave velocity in the medium [187] [204], and Poisson ratio, 0.49. 

Figure 9.4 depicts the mean value of the pressure distribution across the depth obtained 

from 12 specimens. Our results show that the pressure decreased with depth following a 

third order polynomial function. This can be explained by the fact that wavelength 

increased with depth and hence reduced pressure was required to wrinkle the media. Our 

results are also in line with our previous observations [187] that the strength of the fungus 

colony decreases with the depth, possibly due to the significant decrease in number of 

active hyphae compared to the surface.  

        Finally, to demonstrate that our model is more realistic that the Biot’s model to 

demonstrate the variations in pressure with the varying wrinkle wavelengths (with substrate 

depth), we Have conducted a comparison of the pressure vs. wavelength relation rendered 

from Biot’s model [192] and our model for a single isolated layer with same 

wavelength/thickness ratio (~5). The results are shown in Figure 9.5. Our results show that 
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although Biot’s model successfully avoided the drawbacks of Euler’s predictions at 

wavelength/thickness less than ~5 (in which the critical pressure diverges towards the 

infinite [192]), it still predicted almost constant pressure with varying wrinkle wavelengths. 

Our model on the contrary successfully depicted the variations of pressure that resulted in 

variations of wavelength in the substrate. There was a good agreement, as we expected, 

between Biot’s and our model when the wrinkle wavelengths are smaller (< 100 𝜇𝑚) with 

H =2.4 mm. However, they constantly diverged with increasing wrinkle wavelengths, with  

 

 

 

 

 

 

 

Figure 9.5 Comparison of pressure values for different wavelengths calculated from our 
incremental stress model and Biot’s theory. Biot model predicts almost contact pressure 
for different wrinkle wavelengths, which is a significant divergence from the reality. On 
the contrary, our analytical model was able to describe the variations in pressure with the 
variation at different wavelengths 

pressure values ranging within ~100-180 KPa. This phenomenon can be explained by the 

fact that smaller wavelength at the top of agar media neglects the effects from the boundary 

constraints and reflects same physics as a single isolated layer described by Biot [195, 196, 

198]. As the wavelength increases across the depth of media the boundary constraints 
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dominate in the critical pressure calculation and thus diverge. Hence, we report our model 

as a more generalized incremental stress model with boundary effect. Comparison of 

pressure values for different wavelengths calculated from our incremental stress model and 

Biot’s theory. Biot model predicts almost contact pressure for different wrinkle 

wavelengths, which is a significant divergence from the reality. On the contrary, our 

analytical model was able to describe the variations in pressure with the variation at 

different wavelengths.  

9.4 CONCLUSIONS 

        Here we demonstrate for the first time, the feasibility of development of analytical 

models to study pressure profiles exerted by a fungal colony on its substrate, which in turn, 

depend on the 3D physical property profiles of the colony. To establish this initial 

mathematical infrastructure, we computed the mechanical pressure exerted on a solid agar 

growth medium, from a colony of the plant pathogen, A. parasiticus, by measuring the 

wavelengths of the wrinkles that the fungus generates in the medium during colony 

expansion and establishing the generalized equilibrium equations of incremental stresses 

from these measurements. The creation of wrinkles in solid growth medium (a most 

realistic model of the substrates on which fungi grow in nature) was not previously reported 

and is also a novel finding in this study. Further, the novel analytical technique proposed 

here could successfully determine the critical pressure for low amplitude/ thickness ratio 

with constrained boundary where Euler buckling theory and Biot’s theory could not be 

used to predict the critical pressure accurately. We also emphasize here that developing 

such a mathematical infrastructure was possible only due to the 3D wavelength 

measurements generated by Q-ACT. In our previous studies [187] we had established the 
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technique as the most non-invasive method suited for 3D imaging of fungal colonies 

compared to existing state of the art quantitative ultrasonic methods. Here we demonstrate 

here that Q-ACT can also be used to obtain subsurface information across the depth of a 

fungal substrate. 

      Our results suggest that the changes in colony morphologies with growth that were 

observed in our previous work [205] could be deterministic in the formation of the uniform 

and continuous wrinkles around and near the edge of the colony. Our current work is 

focused on performing a series of time-dependent experiments using an array of different 

media and A. parasiticus mutants to provide quantitative comparisons of ‘threshold 

morphologies’ that are needed to initiate such wrinkles. These time-dependent experiments 

will be key in studying the role of different morphological parameters on fungal pressures 

exerted on the substrate.  

      Finally, it should also be noted that the pressure profiles exerted from a fungal colony 

are a function of the material property of the substrate. Hence, same wavelength could 

result in different pressure magnitudes. Pressure profile with higher magnitude in a 

substrate with similar strength is the result of higher strength of the colony and hence 

implicates greater severity of fungal invasion.  Our future studies will use the mathematical 

foundation developed in this work to model pressure profiles generated by fungal 

pathogens in plant and animal tissues. 



www.manaraa.com

 

165 
 

 

 

REFERENCES 

1. Sun, C., COMPARATIVE EVALUATION OF FAILURE ANALYSIS 
METHODS FOR COMPOSITE LAMINATES. 1996. 

2. Weiss, V. and A. Ghoshal, On the search for optimal damage precursors. 
Structural Health Monitoring, 2014. 13(6): p. 601-608. 

3. Condition Based Maintenance Plus DoD Guidebook, D.o.D. (US), Editor. 2008. 
4. Banerjee, S. and R. Ahmed, Precursor/Incubation of Damage State Quantification 

using Hybrid Microcontinuum Approach and High Frequency Ultrasonic. IEEE 
Transaction on Ultrasonics, Ferroelectric and Frequency Control, 2013. 60(6): p. 
1141-1151. 

5. Banerjee, S. and R. Ahmed, Precursor/incubation of multi-scale damage state 
quantification in composite materials: Using hybrid microcontinuum field theory 
and high-frequency ultrasonics. IEEE transactions on ultrasonics, ferroelectrics, 
and frequency control, 2013. 60(6): p. 1141-1151. 

6. Bell, J., Condition based maintenance plus DoD guidebook. 2008. 
7. Jardine, A.K., D. Lin, and D. Banjevic, A review on machinery diagnostics and 

prognostics implementing condition-based maintenance. Mechanical systems and 
signal processing, 2006. 20(7): p. 1483-1510. 

8. Talreja, R. and J. Varna, Modeling Damage, Fatigue and Failure of Composite 
Materials. 2015: Elsevier. 

9. Ahmed, H., et al., Investigation and development of friction stir welding process 
for unreinforced polyphenylene sulfide and reinforced polyetheretherketone. 
Journal of Thermoplastic Composite Materials, 2016: p. 0892705718785676. 

10. Yadav, S., Banerjee, S., Kundu, T. , On Sequencing The Feature Extraction 
Techniques For Online Damage Characterization Journal of Intelligent Material 
Systems and Structures, 2013. Vol. 24: p. pp. 473-483. 

11. Buck, O., Fatigue damage and its nondestructive evaluation: An overview, in 
Review of Progress in Quantitative Nondestructive Evaluation. 1998, Springer. p. 
1-13. 

12. Kotha, S., et al., Boeing 787: Dreamliner. Harvard Business School Case Study, 
2005: p. 9-305. 

13. Raghavan, A. and C.E. Cesnik, Lamb-wave based structural health monitoring. 
Damage Prognosis: For Aerospace, Civil and Mechanical Systems, 2005: p. 235-
258. 

14. Rose, J.L., Ultrasonic waves in solid media. 2000, ASA. 
15. Giurgiutiu, V., Structural health monitoring: with piezoelectric wafer active 

sensors. 2007, Academic Press. 



www.manaraa.com

 

166 
 

16. Michaels, J.E., Detection, localization and characterization of damage in plates 
with an in situ array of spatially distributed ultrasonic sensors. Smart Materials 
and Structures, 2008. 17(3): p. 035035. 

17. Hall, A.J., et al., Damage Precursor Investigation of Fiber-Reinforced Composite 
Materials Under Fatigue Loads. 2013, ARL: USA. 

18. Kim, Y., S. Ha, and F. Chang, Time-domain spectral element method for built-in 
piezoelectric-actuator-induced lamb wave propagation analysis. AIAA journal, 
2008. 46(3): p. 591. 

19. Paćko, P., et al., Lamb wave propagation modelling and simulation using parallel 
processing architecture and graphical cards. Smart Materials and Structures, 2012. 
21(7): p. 075001. 

20. Garnich, M.R. and V.M. Akula, Review of degradation models for progressive 
failure analysis of fiber reinforced polymer composites. Applied Mechanics 
Reviews, 2009. 62(1): p. 010801. 

21. Zhao, L., et al., 3D gradual material degradation model for progressive damage 
analyses of unidirectional composite materials. Mathematical Problems in 
Engineering, 2015. 2015. 

22. Jones, R.M., Mechanics of composite materials. 2018: CRC press. 
23. Zhang, J., et al., A micromechanics-based degradation model for composite 

progressive damage analysis. Journal of Composite Materials, 2016. 50(16): p. 
2271-2287. 

24. Hashin, Z., Failure criteria for unidirectional fiber composites. Journal of applied 
mechanics, 1980. 47(2): p. 329-334. 

25. Hashin, Z. and A. Rotem, A fatigue failure criterion for fiber reinforced materials. 
Journal of composite materials, 1973. 7(4): p. 448-464. 

26. Mallick, P.K., Fiber-reinforced composites: materials, manufacturing, and design. 
2007: CRC press. 

27. Chang, F.-K. and K.-Y. Chang, Post-failure analysis of bolted composite joints in 
tension or shear-out mode failure. Journal of Composite Materials, 1987. 21(9): p. 
809-833. 

28. Lee, J.-W. and I. Daniel, Progressive transverse cracking of crossply composite 
laminates. Journal of Composite Materials, 1990. 24(11): p. 1225-1243. 

29. Joo, S. and C.S. Hong. Progressive failure analysis of composite laminates using 
3-D finite element method. in Key Engineering Materials. 2000. Trans Tech Publ. 

30. Joo, S.-G., C.-S. Hong, and C.-G. Kim, Free edge effect on the post failure 
behavior of composite laminates under tensile loading. Journal of reinforced 
plastics and composites, 2001. 20(3): p. 191-221. 

31. Stähler, S.C., C. Sens-Schönfelder, and E. Niederleithinger, Monitoring stress 
changes in a concrete bridge with coda wave interferometry. The Journal of the 
Acoustical Society of America, 2011. 129(4): p. 1945-1952. 

32. Snieder, R. and M. Vrijlandt, Constraining the source separation with coda wave 
interferometry: Theory and application to earthquake doublets in the Hayward 
fault, California. Journal of Geophysical Research: Solid Earth, 2005. 110(B4). 

33. Snieder, R., et al., Coda wave interferometry for estimating nonlinear behavior in 
seismic velocity. Science, 2002. 295(5563): p. 2253-2255. 



www.manaraa.com

 

167 
 

34. Snieder, R. and H. Douma, Coda wave interferometry. 2004 McGraw-Hill 
Yearbook of Science and Technology, 2004. 54. 

35. Schurr, D.P., et al., Damage detection in concrete using coda wave interferometry. 
Ndt & E International, 2011. 44(8): p. 728-735. 

36. Schurr, D.P., Monitoring damage in concrete using diffuse ultrasonic coda wave 
interferometry. 2010. 

37. Patra, S. and S. Banerjee, Material State Awareness for Composites Part I: 
Precursor Damage Analysis Using Ultrasonic Guided Coda Wave Interferometry 
(CWI). Materials, 2017. 10(12): p. 1436. 

38. Snieder, R., The theory of coda wave interferometry. Pure and Applied 
geophysics, 2006. 163(2-3): p. 455-473. 

39. Kröner, E., Elasticity theory of materials with long range cohesive forces. 
International Journal of Solids and Structures, 1967. 3(5): p. 731-742. 

40. Eringen, A.C., C. Speziale, and B. Kim, Crack-tip problem in non-local elasticity. 
Journal of the Mechanics and Physics of Solids, 1977. 25(5): p. 339-355. 

41. Eringen, A.C., Vistas of nonlocal continuum physics. International Journal of 
Engineering Science, 1992. 30(10): p. 1551-1565. 

42. Wang, Y.-S., Nonlocal elastic analogy for wave propagation in periodic layered 
composites. Mechanics research communications, 1999. 26(6): p. 719-723. 

43. Eringen, A.C., On differential equations of nonlocal elasticity and solutions of 
screw dislocation and surface waves. Journal of applied physics, 1983. 54(9): p. 
4703-4710. 

44. Eringen, A.C., On nonlocal fluid mechanics. International Journal of Engineering 
Science, 1972. 10(6): p. 561-575. 

45. Madenci, E. and E. Oterkus, Peridynamic theory and its applications. Vol. 17. 
2014: Springer. 

46. Eringen, A.C., Mechanics of Continua. 1967: John Wiley  
47. Eringen, A.C., Nonlocal continuum field theories. 2002: Springer Science & 

Business Media. 
48. Peddieson, J., G.R. Buchanan, and R.P. McNitt, Application of nonlocal 

continuum models to nanotechnology. International Journal of Engineering 
Science, 2003. 41(3-5): p. 305-312. 

49. Polizzotto, C., Nonlocal elasticity and related variational principles. International 
Journal of Solids and Structures, 2001. 38(42-43): p. 7359-7380. 

50. Eringen, A.C., Linear theory of nonlocal elasticity and dispersion of plane waves. 
International Journal of Engineering Science, 1972. 10(5): p. 425-435. 

51. Eringen, A.C., Nonlocal polar elastic continua. International journal of 
engineering science, 1972. 10(1): p. 1-16. 

52. Eringen, A.C. and D. Edelen, On nonlocal elasticity. International Journal of 
Engineering Science, 1972. 10(3): p. 233-248. 

53. Eringen, A.C. and B.S. Kim, Stress concentration at the tip of crack. Mechanics 
Research Communications, 1974. 1(4): p. 233-237. 

54. Eringen, A.C., Continuum mechanics at the atomic scale. Crystal Lattice Defects, 
1977. 7: p. 109-130. 

55. Silling, S.A., Reformulation of elasticity theory for discontinuities and long-range 
forces. Journal of the Mechanics and Physics of Solids, 2000. 48(1): p. 175-209. 



www.manaraa.com

 

168 
 

56. PATRA, S. and S. BANERJEE. On Nonlocal Mechanics Based Ultrasonic 
Methods for the Detection of Inception of Damage in Composites. in American 
Society of Composites-30th Technical Conference. 2015. 

57. Patra, S. and S. Banerjee. Ultrasonic measurement and detection of precursor 
delamination damage in composite under tension-torsion loading. in Control, 
Measurement and Instrumentation (CMI), 2016 IEEE First International 
Conference on. 2016. IEEE. 

58. Patra, S. and S. Banerjee. Progressive damage state evolution and quantification 
in composites. in Health Monitoring of Structural and Biological Systems 2016. 
2016. International Society for Optics and Photonics. 

59. Patra, S. and S. Banerjee, Material State Awareness for Composites Part II: 
Precursor Damage Analysis and Quantification of Degraded Material Properties 
Using Quantitative Ultrasonic Image Correlation (QUIC). Materials, 2017. 
10(12): p. 1444. 

60. Patra, S., et al. A Novel Ultrasonic Technique for the Detection of Distributed 
Precursor Damages in Composites. in ASME 2016 International Mechanical 
Engineering Congress and Exposition. 2016. American Society of Mechanical 
Engineers. 

61. Patra, S., et al., Subsurface pressure profiling: a novel mathematical paradigm for 
computing colony pressures on substrate during fungal infections. Scientific 
reports, 2015. 5: p. 12928. 

62. Bažant, Z.P. and M. Jirásek, Nonlocal integral formulations of plasticity and 
damage: survey of progress. Journal of Engineering Mechanics, 2002. 128(11): p. 
1119-1149. 

63. Kahirdeh, A., C. Sauerbrunn, and M. Modarres. Acoustic emission entropy as a 
measure of damage in materials. in AIP Conference Proceedings. 2016. AIP 
Publishing. 

64. Moser, F., L.J. Jacobs, and J. Qu, Modeling elastic wave propagation in 
waveguides with the finite element method. Ndt & E International, 1999. 32(4): p. 
225-234. 

65. Shaw, R.P., Ch.6 Boundary Integral Equation Methods Applied to Wave 
Problems, in Developments in Boundary Element Methods - 1, P.K.B.a.R. 
Butterfield, Editor. 1979, Appl Sci. Pub. p. 121-153. 

66. X. Zhao., J.L.R., Boundary Element Modeling for Defect Characterization 
potential in a wave guide. International Journal of Solids and Structures, 2003. 
40(11): p. 2645. 

67. M, S.-S.F.J.C., Diffraction of P, SV and Rayleigh waves by topographic features: 
a boundary integral formulation. Bull. Seism. Soc. Am. , 1991. 81: p. 2234-2253. 

68. M, S.-S.F.J.C., Topographic effects for incident P, SV and Rayleigh waves. 
Tectonophysics, 1993. 218: p. 113-125. 

69. Pointer T, L.E.H.J.A., Numerical modeling of seismic waves scattered by 
hydrofractures: application of the indirect boundary element method. Geophys J.,  
Int., 1998. 135: p. 289-303. 

70. J, B.M.S.-S.F., Boundary Integral Equations and Boundary Elements Methods in 
Elastodynamics, in Advances in wave propagation in heterogeneous earth, 



www.manaraa.com

 

169 
 

Advances in Geophysicis, V.M.R.D. R-S Wu, Editor. 2007, Elsevier-Academic 
Press, : New York, Boston. 

71. J. J. Wen, M.A.B., A Diffraction Beam Field Expressed as the Superposition of 
Gaussian Beams. Journal of the Acoustical Society of America, 1988. 83: p. 1752. 

72. B. P. Newberry, R.B.T., A Paraxial Theory for the Propagation of Ultrasonic 
Beams in Anisotropic Solids. Journal of the Acoustical Society of America, 1989. 
85: p. 2290. 

73. Spies, M., Transducer Field Modeling in Anisotropic Media by Superposition of 
Gaussian Base Functions. Journal of the Acoustical Society of America, 1999. 
105: p. 633. 

74. J Moll, C.R.-S., R T Schulte, T Klinkert, C -P Fritzen, A Kolb, Modelling of 
Wave-Based SHM Systems Using the Spectral Element Method, under Interactive 
Simulation and Visualization of Lamb Wave Propagation in Isotropic and 
Anisotropic Structures. Journal of Physics: Conference Series, 2011. 305: p. 
012095. 

75. C.T. Ng, M.V., L.R.F.Rose, C.H.Wang, Analytical 
andfiniteelementpredictionofLambwavescattering at delaminationsinquasi-
isotropiccompositelaminates. Journal of Sound and Vibration, 2012. 331: p. 4870-
4883. 

76. Cara A.C. Leckey, M.D.R., Corey A. Miller, Mark K. Hinders, Multiple-mode 
Lamb wave scattering simulations using 3D elastodynamic finite integration 
technique. Ultrasonics, 2012. 52: p. 193-207. 

77. Cara A.C. Leckey, M.D.R., F. Raymond Parker, Guided waves in anisotropic and 
quasi-isotropic aerospace composites: Three-dimensional simulation and 
experiment. Ultrasonics, 2014. 54: p. 385-394. 

78. C. Rajamohan, J. Raamachandran, Bending of anisotropic plates by charge 
simulation method. Advances in Engineering Software, 1999. 30(5): p. 369. 

79. Ballisti, C.H., The multiple multipole method (MMP) in electro and magnetostatic 
problems. IEEE Transactions on Magnetics, 1983. 19(6): p. 2367. 

80. Hafner, C., MMP calculations of guided waves. IEEE Transactions on Magnetics, 
1985. 21: p. 2310. 

81. Imhof, M.G., Computing the elastic scattering from inclusions using the multiple 
multipoles method in three dimensions. Geophysics, J. Int., 2004. 156: p. 287. 

82. Banerjee, S., Kundu, T., Elastic Wave Field Computation in Multilayered Non-
Planar Solid Structures: A Mesh-free Semi-Analytical Approach. Journal of 
Acoustical Society of America, 2008. 123(3): p. 1371-1382. 

83. A., A.S. and J.D. Doll, Generalized Langevin equation approach for atom/solid‐
surface scattering: General formulation for classical scattering off harmonic 
solids. Journal of Chemical Physics, 1976. 64: p. 2375-2388. 

84. Abraham, F.F., Broughton, J. Q., Bernstein, N., Kaxiras, E., Spanning the 
continuum to quantum length scales in a dynamic simulation of brittle fracture. 
Europhysics Letter, 1998. 44(6): p. 783-787. 

85. Abraham, F.F. and H. Gao, How fast can cracks propagate? Physical Review 
Letters, 2000. 84(14): p. 3113-3116. 



www.manaraa.com

 

170 
 

86. Belytsckko, T. and S.P. Xiao, Coupling methods for continuum model with 
molecular model. International Journal of Multiscale Computational Engineering, 
2003. 1: p. 115-126. 

87. Glaessgen, E. and D. Stargel. The digital twin paradigm for future NASA and US 
Air Force vehicles. in 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural 
Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures 
Conference 14th AIAA. 2012. 

88. Rice, J., Elastic fracture mechanics concepts for interfacial cracks. Journal of 
applied mechanics, 1988. 55(1): p. 98-103. 

89. Silling, S.A. and E. Askari, A meshfree method based on the peridynamic model 
of solid mechanics. Computers & structures, 2005. 83(17): p. 1526-1535. 

90. Macek, R.W. and S.A. Silling, Peridynamics via finite element analysis. Finite 
Elements in Analysis and Design, 2007. 43(15): p. 1169-1178. 

91. Silling, S.A., et al., Peridynamic states and constitutive modeling. Journal of 
Elasticity, 2007. 88(2): p. 151-184. 

92. Askari, E., et al. Peridynamics for multiscale materials modeling. in Journal of 
Physics: Conference Series. 2008. IOP Publishing. 

93. Bobaru, F., et al., Handbook of peridynamic modeling. 2016, CRC Press. 
94. Silling, S. and R. Lehoucq, Peridynamic theory of solid mechanics. Advances in 

applied mechanics, 2010. 44: p. 73-168. 
95. Reifsnider, K.L. and S.W. Case, Damage tolerance and durability of material 

systems. Damage Tolerance and Durability of Material Systems, by Kenneth L. 
Reifsnider, Scott W. Case, pp. 435. ISBN 0-471-15299-4. Wiley-VCH, April 
2002., 2002: p. 435. 

96. Bathias, C. and A. Cagnasso, Application of X-ray tomography to the 
nondestructive testing of high-performance polymer composites, in Damage 
Detection in Composite Materials. 1992, ASTM International. 

97. Aymerich, F. and S. Meili, Ultrasonic evaluation of matrix damage in impacted 
composite laminates. Composites Part B: Engineering, 2000. 31(1): p. 1-6. 

98. Kessler, S.S., S.M. Spearing, and C. Soutis, Damage detection in composite 
materials using Lamb wave methods. Smart materials and structures, 2002. 11(2): 
p. 269. 

99. Diamanti, K. and C. Soutis, Structural health monitoring techniques for aircraft 
composite structures. Progress in Aerospace Sciences, 2010. 46(8): p. 342-352. 

100. Hall, A.J., et al., Damage precursor investigation of fiber-reinforced composite 
materials under fatigue loads. 2013, ARMY RESEARCH LAB ABERDEEN 
PROVING GROUND MD VEHICLE TECHNOLOGY DIRECTORATE. 

101. Banerjee, S., Estimation of intrinsic damage state in materials using non-local 
perturbation: Application to active health monitoring. Journal of Intelligent 
Material Systems and Structures, 2009. 20(10): p. 1221-1232. 

102. Thostenson, E.T. and T.W. Chou, Carbon nanotube networks: sensing of 
distributed strain and damage for life prediction and self healing. Advanced 
Materials, 2006. 18(21): p. 2837-2841. 

103. Haile, M.A., et al., Detection of damage precursors with embedded 
magnetostrictive particles. Journal of Intelligent Material Systems and Structures, 
2016. 27(12): p. 1567-1576. 



www.manaraa.com

 

171 
 

104. Martini, F., et al., Seasonal cycles of seismic velocity variations detected using 
coda wave interferometry at Fogo volcano, São Miguel, Azores, during 2003–
2004. Journal of Volcanology and Geothermal Research, 2009. 181(3-4): p. 231-
246. 

105. Larose, E. and S. Hall, Monitoring stress related velocity variation in concrete 
with a 2×10−5 relative resolution using diffuse ultrasound. The Journal of the 
Acoustical Society of America, 2009. 125(4): p. 1853-1856. 

106. Planès, T. and E. Larose, A review of ultrasonic Coda Wave Interferometry in 
concrete. Cement and Concrete Research, 2013. 53: p. 248-255. 

107. Zhang, Y., et al., Study of stress-induced velocity variation in concrete under 
direct tensile force and monitoring of the damage level by using thermally-
compensated coda wave interferometry. Ultrasonics, 2012. 52(8): p. 1038-1045. 

108. Zhang, Y., et al., Diffuse ultrasound monitoring of stress and damage 
development on a 15-ton concrete beam. The Journal of the Acoustical Society of 
America, 2016. 139(4): p. 1691-1701. 

109. Abraham, O., et al. Monitoring of a large cracked concrete sample with non-linear 
mixing of ultrasonic coda waves. in EWSHM-7th European Workshop on 
Structural Health Monitoring. 2014. 

110. Liu, S., et al., A Novel Coda Wave Interferometry Calculation Approach Using 
Taylor Series Expansion. Structural Health Monitoring 2015, 2015. 

111. Materials, A.C.D.-o.C., Standard test method for tensile properties of polymer 
matrix composite materials. 2008: ASTM International. 

112. Banerjee, S. and S. Patra, Nonlocal and Coda Wave Quantification of Damage 
Precursors in Composite from Nonlinear Ultrasonic Response, in Nonlinear 
Ultrasonic and Vibro-Acoustical Techniques for Nondestructive Evaluation. 
2019, Springer. p. 583-626. 

113. PATRA, S. and S. BANERJEE. Precursor Damage Inception Quantification in 
Composites Using Coda Wave Interferometry based on Taylor Series Expansion 
Technique. in Proceedings of the American Society for Composites: Thirty-First 
Technical Conference. 2016. 

114. Patra, S. and S. Banerjee. Precursor to damage state quantification in composite 
materials (Conference Presentation). in Health Monitoring of Structural and 
Biological Systems 2017. 2017. International Society for Optics and Photonics. 

115. Bentahar, M. and R.E. Guerjouma, Monitoring progressive damage in polymer-
based composite using nonlinear dynamics and acoustic emission. The Journal of 
the Acoustical Society of America, 2009. 125(1): p. EL39-EL44. 

116. Obaid, N., M.T. Kortschot, and M. Sain, Understanding the stress relaxation 
behavior of polymers reinforced with short elastic fibers. Materials, 2017. 10(5): 
p. 472. 

117. Obaid, N., M.T. Kortschot, and M. Sain, Modeling and Predicting the Stress 
Relaxation of Composites with Short and Randomly Oriented Fibers. Materials, 
2017. 10(10): p. 1207. 

118. Obaid, N., M.T. Kortschot, and M. Sain, Predicting the stress relaxation behavior 
of glass-fiber reinforced polypropylene composites. Composites Science and 
Technology, 2018. 161: p. 85-91. 



www.manaraa.com

 

172 
 

119. Patra, S., H. Ahmed, and S. Banerjee, Peri-Elastodynamic Simulations of Guided 
Ultrasonic Waves in Plate-Like Structure with Surface Mounted PZT. Sensors, 
2018. 18(1): p. 274. 

120. Gebrekidan, S., et al., Nonlinear ultrasonic characterization of early degradation 
of fatigued Al6061-T6 with harmonic generation technique. Ultrasonics, 2018. 
85: p. 23-30. 

121. Jhang, K.-Y., Nonlinear ultrasonic techniques for nondestructive assessment of 
micro damage in material: a review. International journal of precision engineering 
and manufacturing, 2009. 10(1): p. 123-135. 

122. Zabolotskaya, E., Nonlinear propagation of plane and circular Rayleigh waves in 
isotropic solids. The Journal of the Acoustical Society of America, 1992. 91(5): p. 
2569-2575. 

123. Bermes, C., et al., Experimental characterization of material nonlinearity using 
Lamb waves. Applied physics letters, 2007. 90(2): p. 021901. 

124. Bermes, C., et al., Nonlinear Lamb waves for the detection of material 
nonlinearity. Mechanical Systems and Signal Processing, 2008. 22(3): p. 638-646. 

125. Deng, M. and J. Pei, Assessment of accumulated fatigue damage in solid plates 
using nonlinear Lamb wave approach. Applied physics letters, 2007. 90(12): p. 
121902. 

126. Pruell, C., et al., Evaluation of plasticity driven material damage using Lamb 
waves. Applied Physics Letters, 2007. 91(23): p. 231911. 

127. Pruell, C., et al., Evaluation of fatigue damage using nonlinear guided waves. 
Smart Materials and Structures, 2009. 18(3): p. 035003. 

128. Semperlotti, F. and S. Conlon, Nonlinear structural surface intensity: An 
application of contact acoustic nonlinearity to power flow based damage 
detection. Applied Physics Letters, 2010. 97(14): p. 141911. 

129. Semperlotti, F., K. Wang, and E. Smith, Localization of a breathing crack using 
nonlinear subharmonic response signals. Applied Physics Letters, 2009. 95(25): p. 
254101. 

130. Li, W., Y. Cho, and J.D. Achenbach, Detection of thermal fatigue in composites 
by second harmonic Lamb waves. Smart Materials and Structures, 2012. 21(8): p. 
085019. 

131. Shen, Y. and V. Giurgiutiu, Predictive modeling of nonlinear wave propagation 
for structural health monitoring with piezoelectric wafer active sensors. Journal of 
Intelligent Material Systems and Structures, 2014. 25(4): p. 506-520. 

132. Matlack, K., et al., Review of second harmonic generation measurement 
techniques for material state determination in metals. Journal of Nondestructive 
Evaluation, 2015. 34(1): p. 273. 

133. Junfeng, D.M.P., Nondestructive evaluation of fatigue damage in solid plates 
using nonlinear ultrasonic Lamb wave method [J]. Acta Acustica, 2008. 4: p. 013. 

134. Yang, Y., et al., Second harmonic generation at fatigue cracks by low-frequency 
Lamb waves: experimental and numerical studies. Mechanical Systems and 
Signal Processing, 2018. 99: p. 760-773. 

135. Mandal, D.D. and S. Banerjee, Identification of breathing type disbonds in 
stiffened panels using non-linear lamb waves and built-in circular PWT array. 
Mechanical Systems and Signal Processing, 2019. 117: p. 33-51. 



www.manaraa.com

 

173 
 

136. Chillara, V.K. and C.J. Lissenden, Review of nonlinear ultrasonic guided wave 
nondestructive evaluation: theory, numerics, and experiments. Optical 
Engineering, 2015. 55(1): p. 011002. 

137. Matlack, K.H., et al., Experimental characterization of efficient second harmonic 
generation of Lamb wave modes in a nonlinear elastic isotropic plate. Journal of 
Applied Physics, 2011. 109(1): p. 014905. 

138. Deng, M., Y. Xiang, and L. Liu, Time-domain analysis and experimental 
examination of cumulative second-harmonic generation by primary Lamb wave 
propagation. Journal of Applied Physics, 2011. 109(11): p. 113525. 

139. Deng, M., P. Wang, and X. Lv, Experimental observation of cumulative second-
harmonic generation of Lamb-wave propagation in an elastic plate. Journal of 
Physics D: Applied Physics, 2005. 38(2): p. 344. 

140. Masurkar, F., W.T. Peter, and N. Yelve, Investigating the critical aspects of 
evaluating the material nonlinearity in metal plates using Lamb waves: 
Theoretical and numerical approach. Applied Acoustics, 2018. 140: p. 301-314. 

141. Sun, C. and W. Chan. Frequency effect on the fatigue life of a laminated 
composite. in Composite materials: testing and design (fifth conference). 1979. 
ASTM International. 

142. Reifsnider, K., W. Stinchcomb, and T. O'Brien, Frequency effects on a stiffness-
based fatigue failure criterion in flawed composite specimens, in Fatigue of 
filamentary composite materials. 1977, ASTM International. 

143. Giurgiutiu, V., Lamb wave generation with piezoelectric wafer active sensors for 
structural health monitoring. Smart Structures and Materials 2003, 2003. 5056: p. 
111-122. 

144. Lee, B. and W. Staszewski, Lamb wave propagation modelling for damage 
detection: I. Two-dimensional analysis. Smart Materials and Structures, 2007. 
16(2): p. 249. 

145. Dawe, D.J., Use of the finite strip method in predicting the behaviour of 
composite laminated structures. Composite Structures, 2002. 57(1): p. 11-36. 

146. Ahmed, H., et al., Multifunction acoustic modulation by a multi-mode acoustic 
metamaterial architecture. Journal of Physics Communications 

2018. 
147. Saadatzi, M., et al., AEVE 3D: Acousto Electrodynamic 3-Dimensional Vibration 

Exciter for Engineering Testing. 2018. 
148. Hafezi, M.H. and T. Kundu, Peri-Ultrasound Modeling of Dynamic Response of 

an Interface Crack Showing Wave Scattering and Crack Propagation. Journal of 
Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems, 
2018. 1(1): p. 011003. 

149. Ha, S. and F.-K. Chang, Optimizing a spectral element for modeling PZT-induced 
Lamb wave propagation in thin plates. smart materials and structures, 2009. 
19(1): p. 015015. 

150. Bergamini, A. and F. Biondini, Finite strip modeling for optimal design of 
prestressed folded plate structures. Engineering Structures, 2004. 26(8): p. 1043-
1054. 



www.manaraa.com

 

174 
 

151. Cho, Y. and J.L. Rose, A boundary element solution for a mode conversion study 
on the edge reflection of Lamb waves. The Journal of the Acoustical Society of 
America, 1996. 99(4): p. 2097-2109. 

152. Yim, H. and Y. Sohn, Numerical simulation and visualization of elastic waves 
using mass-spring lattice model. IEEE transactions on ultrasonics, ferroelectrics, 
and frequency control, 2000. 47(3): p. 549-558. 

153. Balasubramanyam, R., et al., A finite-difference simulation of ultrasonic Lamb 
waves in metal sheets with experimental verification. Journal of Physics D: 
Applied Physics, 1996. 29(1): p. 147. 

154. Diehl, P. and M.A. Schweitzer, Simulation of wave propagation and impact 
damage in brittle materials using peridynamics, in Recent trends in computational 
engineering-CE2014. 2015, Springer. p. 251-265. 

155. Nishawala, V.V., et al., Simulation of elastic wave propagation using cellular 
automata and peridynamics, and comparison with experiments. Wave Motion, 
2016. 60: p. 73-83. 

156. Martowicz, A., et al. Non-local modeling and simulation of wave propagation and 
crack growth. in AIP Conference Proceedings. 2014. AIP. 

157. Leckey, C.A., et al., Multiple-mode Lamb wave scattering simulations using 3D 
elastodynamic finite integration technique. Ultrasonics, 2012. 52(2): p. 193-207. 

158. Banerjee, S., T. Kundu, and N.A. Alnuaimi, DPSM technique for ultrasonic field 
modelling near fluid–solid interface. Ultrasonics, 2007. 46(3): p. 235-250. 

159. Kijanka, P., et al., GPU-based local interaction simulation approach for simplified 
temperature effect modelling in Lamb wave propagation used for damage 
detection. Smart materials and structures, 2013. 22(3): p. 035014. 

160. Shen, Y. and C.E. Cesnik, Local Interaction Simulation Approach for Efficient 
Modeling of Linear and Nonlinear Ultrasonic Guided Wave Active Sensing of 
Complex Structures. Journal of Nondestructive Evaluation, Diagnostics and 
Prognostics of Engineering Systems, 2018. 1(1): p. 011008. 

161. Marzani, A., et al., A semi-analytical finite element formulation for modeling 
stress wave propagation in axisymmetric damped waveguides. Journal of Sound 
and Vibration, 2008. 318(3): p. 488-505. 

162. Balikin, A., Numerical Simulation of Guided Waves for SHM-a Literature 
Survey. UPSSP Platform Grant Report, Dynamics Research Group, Department 
of Mechanical Engineering, University of Sheffield, 2007. 

163. Hafezi, M.H., R. Alebrahim, and T. Kundu, Peri-ultrasound for modeling linear 
and nonlinear ultrasonic response. Ultrasonics, 2017. 80: p. 47-57. 

164. Ha, Y.D. and F. Bobaru, Studies of dynamic crack propagation and crack 
branching with peridynamics. International Journal of Fracture, 2010. 162(1): p. 
229-244. 

165. Hafezi, M.H. and T. Kundu, Peri-ultrasound modeling for surface wave 
propagation. Ultrasonics, 2018. 84: p. 162-171. 

166. Zhou, W., D. Liu, and N. Liu, Analyzing dynamic fracture process in fiber-
reinforced composite materials with a peridynamic model. Engineering Fracture 
Mechanics, 2017. 178(Supplement C): p. 60-76. 

167. Xu, J., et al., Peridynamic Analysis of Impact Damage in Composite Laminates. 
Journal of Aerospace Engineering, 2008. 21(3): p. 187-194. 



www.manaraa.com

 

175 
 

168. Giurgiutiu, V., Tuned Lamb wave excitation and detection with piezoelectric 
wafer active sensors for structural health monitoring. Journal of intelligent 
material systems and structures, 2005. 16(4): p. 291-305. 

169. Parks, M.L., et al., Peridynamics with LAMMPS: A User Guide, v0. 3 Beta. 
Sandia Report (2011–8253), 2011. 

170. Leckey, C.A.C., M.D. Rogge, and F. Raymond Parker, Guided waves in 
anisotropic and quasi-isotropic aerospace composites: Three-dimensional 
simulation and experiment. Ultrasonics, 2014. 54(1): p. 385-394. 

171. Michaels, T.E., J.E. Michaels, and M. Ruzzene, Frequency–wavenumber domain 
analysis of guided wavefields. Ultrasonics, 2011. 51(4): p. 452-466. 

172. Shen, Y. and V. Giurgiutiu. WFR-2D: an analytical model for PWAS-generated 
2D ultrasonic guided wave propagation. in SPIE Smart Structures and Materials + 
Nondestructive Evaluation and Health Monitoring. 2014. SPIE. 

173. Shen, Y. and V. Giurgiutiu, WaveForm Revealer-An analytical predictive tool for 
the simulation of multi-mode guided waves interaction with damage. AIAA SDM, 
2013. 

174. Dostal, P., et al., The impact of an invasive plant changes over time. Ecol Lett, 
2013. 16(10): p. 1277-84. 

175. Nyachuba, D.G., Foodborne illness: is it on the rise? Nutr Rev, 2010. 68(5): p. 
257-69. 

176. Borchers, A., et al., Food safety. Clin Rev Allergy Immunol, 2010. 39(2): p. 95-
141. 

177. Dixon, D.M., et al., Fungal infections: a growing threat. Public Health Rep, 1996. 
111(3): p. 226-35. 

178. Helfer, S., Rust fungi and global change. New Phytol, 2014. 201(3): p. 770-80. 
179. Weber, C.J., Update on global climate change. Urol Nurs, 2010. 30(1): p. 81-4. 
180. Porras-Alfaro, A. and P. Bayman, Hidden fungi, emergent properties: endophytes 

and microbiomes. Annu Rev Phytopathol, 2011. 49: p. 291-315. 
181. CAST, Mycotoxins: Risks in Plant Animal and Human Systems, in Council for 

Agricultural Science and Technology. 2003: Ames, Iowa. 
182. Wilson, L.S., et al., The direct cost and incidence of systemic fungal infections. 

Value Health, 2002. 5(1): p. 26-34. 
183. Lai, C.-C., et al., Current challenges in the management of invasive fungal 

infections. Journal of Infection and Chemotherapy, 2008. 14(2): p. 77-85. 
184. Park, B.J., et al., Estimation of the current global burden of cryptococcal 

meningitis among persons living with HIV/AIDS. Aids, 2009. 23(4): p. 525-530. 
185. van Gool, R., The cost of treating systemic fungal infections. Drugs, 2001. 61 

Suppl 1: p. 49-56. 
186. Rentz, A.M., M.T. Halpern, and R. Bowden, The impact of candidemia on length 

of hospital stay, outcome, and overall cost of illness. Clin Infect Dis, 1998. 27(4): 
p. 781-8. 

187. Banerjee, S., Gummadidala, P. M., Rima, R. A., Ahmed, R. U., Kenne, G. J., 
Mitra, C., Gomma, O. M., Hill, J., mcFadden, S., Banaszek, N., Fayad, R., 
Terejanu, G., Chnada, A.,, Quantitative acoustic contrast tomography reveals 
unique multiscale physical fluctuations during aflatoxin synthesis in Aspergillus 
parasiticus. Fungal Genetics and Biology, 2014. 73:61. 



www.manaraa.com

 

176 
 

188. Money, N.P., Mechanics of Invasive Fungal Growth and the Significance of 
Turgor in Plant Infection, in Molecular Genetics of Host-Specific Toxins in Plant 
Disease. 1998, Kluwer: Dordrecht. p. 261-271. 

189. Davidson, F.A. and A.W. Park, A mathematical model for fungal development in 
heterogeneous environments. Applied Mathematics Letters, 1998. 11(6): p. 51-56. 

190. Webster, J., Weber, R. , Introduction to Fungi. 2007: New York: Cambridge 
University Press. 

191. Brand, A., Gow, N. AR., Mechanisms of hypha orientation of fungi. Current 
Opinion in Microbiology, 2009. 17: p. 350-357. 

192. Johnson, A.M., Styles of Folding: Mechanics and Mechanisms of Folding of 
Natural Elastic Materials. 1977: Elsevier Scientific Publishing Company. 

193. Biot, M.A., Folding instability of a layered viscoelastic medium under 
compression. Proc. R. Soc. Lond, 1957. A242: p. 111-454. 

194. Biot, M.A., Theory of folding of stratified viscoelastic media and its implications 
in tectonics and orogenesis. Geol. Soc. Am. Bull, 1961. 72: p. 1595-1620. 

195. Biot, M.A., Theory of internal buckling of a confined multilayered structure. 
Geol. Soc. Am. Bull., 1964. 75: p. 563-568. 

196. Biot, M.A., Further development of the theory of internal buckling of multilayers. 
Geol. Soc. Am. Bull, 1965b. 75: p. 833-840. 

197. Biot, M.A., Similar folding of the first and second kinds. Geol. Soc. Am. Bull, 
1965d. 75: p. 251-258. 

198. Biot, M.A., Theory of viscous buckling and gravity instability of multilayers with 
large deformation. Geol. Soc. Am. Bull, 1965c. 76: p. 371-378. 

199. Biot, M.A., Theory of Stress-Strain Relations in Anisotropic Viscoelasticity and 
Relaxation Phenomena. Journal of Applied Physics, 1954. 25: p. 1385-1391. 

200. Biot, M.A., Theory of Deformation of a Porous Viscoelastic Anisotropic Solid. 
Journal of Applied Physics, 1956. 27: p. 459-467. 

201. Biot, M.A., Non-linear theory of elasticity and the linearized case for a body 
under initial stress. Philos. Mag, 1939. 28: p. 468-489. 

202. Biot, M.A., Fundamental skin effect in anisotropic solid mechanics. Int. J. Solids 
Struct, 1966a. 2: p. 645-663. 

203. Biot, M.A., Mechanics of Incremental Deformations. . Vol. 504pp. 1965: John 
Wiley, New York. 504pp. 

204. Nayar, V.T., et al., Elastic and viscoelastic characterization of agar. J Mech Behav 
Biomed Mater, 2012. 7: p. 60-8. 

205. Banerjee, S., et al., Quantitative acoustic contrast tomography reveals unique 
multiscale physical fluctuations during aflatoxin synthesis in Aspergillus 
parasiticus. Fungal Genetics and Biology, 2014. 73: p. 61-68. 

 


	University of South Carolina
	Scholar Commons
	Fall 2018

	Ultrasonic Analysis and Tools for Quantitative Material State Awarness of Engineered Materials
	Subir Patra
	Recommended Citation


	Microsoft Word - Dissertation_v3

